1. **2-3 trees basics.** Suppose we insert the following numbers into a 2-3 tree (which is initially empty), in the given order:

 9, 15, 4, 3, 6, 13, 2, 11, 7, 1, 16, 12, 14, 8, 10, 5.

 (a) Draw a picture of the 2-3 tree after each insertion: you do not have to write down the “guides” at each node — just the tree structure and the values stored at the leaves.

 (b) Suppose that now a split operation is performed, which splits the tree into two trees: one containing those numbers ≤ 8, and the other containing those numbers > 8. Show the resulting trees (again, you can omit the “guides”).

2. **Heap basics.** Suppose we insert the following numbers into a min heap (which is initially empty), in the given order:

 9, 15, 4, 3, 6, 13, 2, 11, 7, 1, 16, 12, 14, 8, 10, 5.

 Recall that a min heap is a heap where the root contains the smallest item (as opposed to a max heap, where the root contains the largest item).

 (a) Draw a picture of the heap after each insertion. Draw the heap as a tree (ignoring the fact that this tree is usually implemented as an array).

 (b) Now suppose that three DeleteMin operations are performed. Draw a picture of the heap after each of these three operations.

3. **A heaping challenge.** You are given a min heap containing \(n \) data items, along with a data item \(x \) and a positive integer \(k \). Your task is to design an algorithm that runs in time \(O(k) \) and answers the following question: are there at least \(k \) items in the heap that are less than \(x \)? Of course, you could go through the entire heap and just count the number of items that are less than \(x \), but this would take time proportional to \(n \). The challenge is to design an algorithm whose running time is \(O(k) \) by somehow using the heap property.

4. **k-way merge.** Use a heap to design an \(O(n \log k) \)-time to merge \(k \) sorted lists into one sorted list, where \(n \) is the total number of elements in all the input lists.

 Note: Your algorithm should use space \(O(k) \) of internal memory, reading the input lists as streams, and writing the output list as a stream.

5. **List maintenance (I).** Consider the problem of maintaining a collection of lists of items on which the following operations can be performed:

 (i) Create a new list with one item.

 (ii) Given two lists \(L_1 \) and \(L_2 \), form their concatenation \(L \), i.e., the list consisting of all items in \(L_1 \) followed by all items in \(L_2 \) (destroying \(L_1 \) and \(L_2 \) in the process).

 (iii) Given a list \(L \) and a positive integer \(k \), split \(L \) into two lists \(L_1 \) and \(L_2 \), where \(L_1 \) consists of the first \(k \) items of \(L \), and \(L_2 \) the rest (\(L \) is destroyed in the process).

 (iv) Given a list \(L \) and a positive integer \(k \), report the \(k \)th item in \(L \).

 Describe data structures and algorithms supporting these operations so that operation (i) takes constant time, and operations (ii)–(iv) can be performed in time \(O(\log n) \) (where \(n \) is the length of \(L \)).

 Hint: Use a variation on 2-3 trees. Be sure to specify what information is stored at each node. Just sketch the algorithms, emphasizing the similarity and differences with algorithms for ordinary 2-3 trees.

6. **List maintenance (II).** Extending the previous exercise, suppose we also want to an operation that reverses a given list \(L \). Show how this operation can be implemented in constant time, while the other operations can still be performed within the time bounds of the previous exercise.

 Hint: this should be a small modification to the solution to the previous exercise, making use of the “lazy evaluation” trick that was used in FlipRange example from class.