Basic definitions

Discrete probability distribution: a function \(\Pr : \Omega \rightarrow [0, 1] \) such that \(\sum_{\omega \in \Omega} \Pr(\omega) = 1 \)

- \(\Omega \) called *sample space*
- a point \(\omega \in \Omega \) represents the *outcome* of some experiment
- \(\Pr(\omega) \) represents the probability of outcome \(\omega \)
- \(\Omega \) may be *finite* or *countably infinite*
Example: rolling a die. \(\Omega = \{1, \ldots, 6\} \), \(\Pr(\omega) = 1/6 \) for all \(\omega \in \Omega \)

Example: uniform distribution. \(|\Omega| = n, \Pr(\omega) = 1/n \) for all \(\omega \in \Omega \)

Example: Bernoulli trial. An experiment with two outcomes. Probability of “success” is \(p \), probability of “failure” is \(q := 1 - p \).
An **event** is a subset $\mathcal{A} \subseteq \Omega$

The **probability of** \mathcal{A} is $\Pr[\mathcal{A}] := \sum_{\omega \in \mathcal{A}} \Pr(\omega)$

Logical operations:

- $\mathcal{A} \cap \mathcal{B}$ — logical AND
- $\mathcal{A} \cup \mathcal{B}$ — logical OR
- $\Omega \setminus \mathcal{A}$ — logical NOT

Union bounds:

- $\Pr[\mathcal{A} \cup \mathcal{B}] = \Pr[\mathcal{A}] + \Pr[\mathcal{B}] - \Pr[\mathcal{A} \cap \mathcal{B}]$
- For any family of events $\{\mathcal{A}_i\}_{i \in I}$:

$$
\Pr\left[\bigcup_{i \in I} \mathcal{A}_i \right] \leq \sum_{i \in I} \Pr[\mathcal{A}_i]
$$

and equality holds if the \mathcal{A}_i's are *pairwise disjoint*
Example (Alice and Bob)

Alice rolls two dice, and asks Bob to guess a value that appears on either of the two dice (without looking)

What is the probability that Bob guesses correctly?

Model: uniform distribution on \(\Omega := \{1, \ldots, 6\} \times \{1, \ldots, 6\} \)

For \((s, t) \in \Omega\): \(s = \text{first die}, \ t = \text{second die}\)

For \(k = 1, \ldots, 6\), define

- event \(A_k\): first die = \(k\)
- event \(B_k\): second die = \(k\)
- \(C_k := A_k \cup B_k\) (\(k\) appears on either die)

\[
\Pr[A_k] = \frac{6}{36} = \frac{1}{6}, \ \Pr[B_k] = \frac{6}{36} = \frac{1}{6}, \ \Pr[A_k \cap B_k] = \frac{1}{36}
\]

Therefore:

\[
\Pr[C_k] = \Pr[A_k \cup B_k] = \Pr[A_k] + \Pr[B_k] - \Pr[A_k \cap B_k] = \frac{1}{6} + \frac{1}{6} - \frac{1}{36} = \frac{11}{36}
\]

So no matter Bob’s guess, he is correct with probability \(11/36 < 1/3\)
Conditional probability and independence

Suppose $\Pr[\mathcal{B}] \neq 0$

Define $\Pr(\omega \mid \mathcal{B}) := \begin{cases} \frac{\Pr(\omega)}{\Pr[\mathcal{B}]} & \text{if } \omega \in \mathcal{B}, \\ 0 & \text{otherwise}. \end{cases}$

$\Pr(\cdot \mid \mathcal{B})$ is a new probability distribution on Ω: the conditional distribution given \mathcal{B}

Intuition:

- we run an experiment
- we learn that \mathcal{B} occurs
- then $\Pr(\cdot \mid \mathcal{B})$ assigns new probabilities to all outcomes, reflecting this partial knowledge
For any event \mathcal{A}:

$$\Pr[\mathcal{A} | \mathcal{B}] = \sum_{\omega \in \mathcal{A}} \Pr(\omega | \mathcal{B}) = \frac{\Pr[\mathcal{A} \cap \mathcal{B}]}{\Pr[\mathcal{B}]}.$$

\mathcal{A} and \mathcal{B} are called **independent** if

- $\Pr[\mathcal{A} \cap \mathcal{B}] = \Pr[\mathcal{A}] \cdot \Pr[\mathcal{B}]$,
- or equivalently, $\Pr[\mathcal{A}] = \Pr[\mathcal{A} | \mathcal{B}]$

Intuition:

- we run an experiment
- we learn that \mathcal{B} occurs
- then $\Pr[\mathcal{A} | \mathcal{B}]$ tells us how likely it is for \mathcal{A} to occur, given this partial knowledge
- independence means: learning that \mathcal{B} occurs tells us nothing about \mathcal{A}
Back to Alice and Bob . . .

Suppose Alice tells Bob the sum of the two dice before he guesses

For example, suppose sum = 4. What is Bob’s best strategy?

For \(\ell = 2, \ldots, 12 \), define event \(\mathcal{D}_\ell \): sum = \(\ell \)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\Pr[C_1 \mid \mathcal{D}_4] = \frac{2/36}{3/36} = \frac{2}{3}
\]
\[
\Pr[C_2 \mid \mathcal{D}_4] = \frac{1/36}{3/36} = \frac{1}{3}
\]
\[
\Pr[C_3 \mid \mathcal{D}_4] = \frac{2/36}{3/36} = \frac{2}{3}
\]
\[
\Pr[C_4 \mid \mathcal{D}_4] = \Pr[C_5 \mid \mathcal{D}_4] = \Pr[C_6 \mid \mathcal{D}_4] = 0
\]

Bob’s best choice: 1 or 3
Total probability

Suppose \(\{B_i\}_{i \in I} \) is a partition of \(\Omega \)

Let \(A \) be any event

Law of total probability:

\[
Pr[A] = \sum_{i \in I} Pr[A \cap B_i] = \sum_{i \in I} Pr[A | B_i] \cdot Pr[B_i]
\]
Back to Alice and Bob . . .

Let us compute Bob’s overall winning probability

\[
\begin{array}{ccccccc}
6 & 7 & 8 & 9 & 10 & 11 & 12 \\
5 & 6 & 7 & 8 & 9 & 10 & 11 \\
4 & 5 & 6 & 7 & 8 & 9 & 10 \\
3 & 4 & 5 & 6 & 7 & 8 & 9 \\
2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
\]

If the sum = 2 or = 12, Bob wins for sure

Suppose sum = \(\ell \), with 1 < \(\ell \) < 12, and \(N_\ell \) is the number of pairs with sum = \(\ell \)

Bob can always choose a value that appears twice among these \(N_\ell \) pairs (for example, Bob can choose 1 if \(\ell \leq 7 \) and 6 if \(\ell > 7 \))

Let \(C \) be the event that Bob wins

Total probability: \(\Pr[C] = \sum_{\ell=2}^{12} \Pr[C | D_\ell] \Pr[D_\ell] \)
Alice and Bob (cont’d)

We have

\[
\Pr[C \mid D_2] \Pr[D_2] = 1 \cdot \frac{1}{36} = \frac{1}{36}
\]

\[
\Pr[C \mid D_{12}] \Pr[D_{12}] = 1 \cdot \frac{1}{36} = \frac{1}{36}
\]

For \(\ell = 3, \ldots, 11 \), we have

\[
\Pr[C \mid D_\ell] \Pr[D_\ell] = \frac{2}{N_\ell} \cdot \frac{N_\ell}{36} = \frac{1}{18}
\]

Therefore,

\[
\Pr[C] = \frac{1}{36} + \frac{1}{36} + \frac{9}{18} = \frac{10}{18}.
\]
Random variables

A random variable taking values in a set S:

$$X : \Omega \rightarrow S$$

For $s \in S$, the event “$X = s$” is $\{\omega \in \Omega : X(\omega) = s\}$, and

$$\Pr[X = s] = \sum_{\omega \in \Omega, X(\omega) = s} \Pr(\omega)$$

Building new random variables:

- $Y = f(X)$ means $Y(\omega) = f(X(\omega))$ for all $\omega \in \Omega$
- $Z = X + Y$ means $Z(\omega) = X(\omega) + Y(\omega)$ for all $\omega \in \Omega$
A random variable \(X \) taking values in \(S \) defines a probability distribution on \(S \):

\[
\Pr_X(s) = \Pr[X = s]
\]

For an event \(A \), we can define the **indicator variable**: \(X_A(\omega) := \begin{cases}
1 & \text{if } \omega \in A, \\
0 & \text{otherwise}
\end{cases} \)
Independent random variables

X takes values in S, Y takes values in T

X and Y are called **independent** if

$$\Pr[(X = s) \cap (Y = t)] = \Pr[X = s] \cdot \Pr[Y = t]$$

for all $s \in S$ and $t \in T$

Equivalently,

$$\Pr[X = s \mid Y = t] = \Pr[X = s]$$

for all $s \in S$ and $t \in T$

Intuition: learning the value of Y gives us no information about the value of X
Example: *sum of dice.*

We roll two dice
Let X and Y denote their values
Let $Z := X + Y$
X and Y are independent
X and Z are not independent
Y and Z are not independent
Example: \(\text{sum mod } m \).

Suppose \(X \) and \(Y \) are independent random variables, with each uniformly distributed over \(\mathbb{Z}_m \).

This means that \((X, Y) \) is uniformly dist’d over \(\mathbb{Z}_m \times \mathbb{Z}_m \).

Set \(Z := X + Y \).

Claim: \(Z \) is uniformly distributed over \(\mathbb{Z}_m \).

- Why? For each \(\alpha \in \mathbb{Z}_m \), there are \(m \) solutions \((s, t) \in \mathbb{Z}_m \times \mathbb{Z}_m \) to the equation \(s + t = \alpha \).

Claim: \(X \) and \(Z \) are independent.

Let \(\alpha, \beta \in \mathbb{Z}_m \) be fixed.

Want to show \(\Pr[(X = \alpha) \cap (Z = \beta)] = 1/m^2 \).

\[
\Pr[(X = \alpha) \cap (Z = \beta)] = \Pr[(X = \alpha) \cap (X + Y = \beta)] \\
= \Pr[(X = \alpha) \cap (\alpha + Y = \beta)] \\
= \Pr[(X = \alpha) \cap (Y = \beta - \alpha)] \\
= \Pr[X = \alpha] \cdot \Pr[Y = \beta - \alpha] \quad (X, Y \text{ indep.}) \\
= (1/m) \cdot (1/m) = 1/m^2
\]
Example: *one-time pad.*

Suppose X and Y are independent random variables, where Y is uniformly distributed over \mathbb{Z}_m.

X may have an arbitrary distribution.

Set $Z := X + Y$.

Fact: X and Z are independent.

Application to cryptography

Suppose Y represents an encryption key shared between Alice and Bob.

Alice encrypts a message X by computing the ciphertext $Z = X + Y$ and sends Z over an insecure network.

Bob can decrypt the ciphertext by computing $X = Z - Y$.

Independence of Z and X ensures that an eavesdropper who only learns the value of the ciphertext Z learns nothing about the message X.
Mutual and \(k \)-wise independence

Let \(\{X_i\}_{i \in I} \) be a finite family of random variables.

Let us call a corresponding family of values \(\{s_i\}_{i \in I} \) an \textbf{assignment} to \(\{X_i\}_{i \in I} \) if \(s_i \) is in the image of \(X_i \) for each \(i \in I \).

\(\{X_i\}_{i \in I} \) is called \textbf{mutually independent} if for every assignment \(\{s_i\}_{i \in I} \) to \(\{X_i\}_{i \in I} \), we have

\[
\Pr \left[\bigcap_{i \in I} (X_i = s_i) \right] = \prod_{i \in I} \Pr[X_i = s_j].
\]

For \(k \leq |I| \), we say that \(\{X_i\}_{i \in I} \) is \textbf{\(k \)-wise independent} if \(\{X_j\}_{j \in J} \) is mutually independent for every subset \(J \subseteq I \) of size \(k \).

We say \(\{X_i\}_{i \in I} \) is \textbf{pairwise independent} if it is 2-wise independent.
Example: *sum mod m.*

Suppose X and Y are independent random variables, with each uniformly distributed over \mathbb{Z}_m

Set $Z := X + Y$

We saw that Z is uniformly distributed over \mathbb{Z}_m and that X and Z are independent

Same argument shows Y and Z are independent

It follows that X, Y, Z are pairwise independent

However, they are not mutually independent:

$$\Pr[(X = 0) \cap (Y = 0) \cap (Z = 1)] = 0 \neq 1/m^3$$
Fact: If \(\{X_i\}_{i \in I} \) is \(k \)-wise independent, then it is also \(\ell \)-wise independent for any \(\ell < k \)

Fact: Let \(\{X_i\}_{i=1}^n \) be a family of random variables, where each \(X_i \) takes values in a finite set \(S_i \)

Then the following are equivalent:

(i) \((X_1, \ldots, X_n) \) is uniformly distributed over \(S_1 \times \cdots \times S_n \)

(ii) \(\{X_i\}_{i=1}^n \) is mutually independent and each \(X_i \) is uniformly distributed over \(S_i \)

Fact: Suppose \(\{X_i\}_{i=1}^n \) is a mutually independent family of random variables

Further, suppose that for \(i = 1, \ldots, n \), we have \(Y_i = g_i(X_i) \) for some function \(g_i \)

Then \(\{Y_i\}_{i=1}^n \) is mutually independent
Example: *k-wise independence from polynomial evaluation.*

Let \(p \) be a prime

Choose a random polynomial \(G \in \mathbb{Z}_p[\mathbf{X}] \) of degree less than \(k \)

For each \(\gamma \in \mathbb{Z}_p \), define \(Y_\gamma := G(\gamma) \)

Claim: \(\{ Y_\gamma \}_{\gamma \in \mathbb{Z}_p} \) is a \(k \)-wise independent family of random variables, with each \(Y_\gamma \) uniformly distributed over \(\mathbb{Z}_p \)

This follows from Lagrange interpolation:

Let \(\gamma_1, \ldots, \gamma_k \in \mathbb{Z}_p \) be fixed, distinct evaluation points

Lagrange interpolation says the map

\[
(a_0, \ldots, a_{k-1}) \mapsto (g(\gamma_1), \ldots, g(\gamma_k)), \text{ where } g := \sum_j a_j \mathbf{X}^j \in \mathbb{Z}_p[\mathbf{X}]
\]

is bijective

Therefore, a random coefficient vector maps to a random evaluation vector

Note: \(\{ Y_\gamma \}_{\gamma \in \mathbb{Z}_p} \) is not \((k + 1)\)-wise independent

Again, Lagrange interpolation: the values of \(G \) at \(k \) distinct evaluation points completely determine \(G \), and hence the value of \(G \) at any other evaluation point.
Example (cont’d): *Threshold secret sharing.*

Alice has a secret $\sigma \in \mathbb{Z}_p$

She computes a random polynomial $G \in \mathbb{Z}_p[X]$ of degree less than k

She sets $H := G + \sigma X^k \in \mathbb{Z}_p[X]$

She computes “secret shares” $S_i = H(\gamma_i)$ for $i = 1, \ldots, n$, where $
\gamma_1, \ldots, \gamma_n \in \mathbb{Z}_p$ are distinct, fixed evaluation points

Fact: the S_i’s are k-wise independent, and each S_i is uniformly distributed over \mathbb{Z}_p, but any $k + 1$ shares determine H (and hence σ)

Alice backs up her secret by storing the S_i’s “in the cloud” on n different servers

Any coalition of k or fewer servers learn nothing about her secret

Alice can reconstruct her secret from any $k + 1$ shares

Other applications: nuclear launch codes (used by Russia in the 1990’s)
Example: *Binomial distribution.*

Suppose we perform \(n \) independent experiments, where each experiment succeeds with probability \(p \) and fails with probability \(q := 1 - p \)

Let \(X_i = 1 \) if \(i \)th experiment succeeds, and 0 otherwise

The family \(\{X_i\}_{i=1}^n \) is mutually independent

Define \(X := \sum_{i=1}^n X_i \)

For \(k = 0 \ldots n \), we have

\[
\Pr[X = k] = \binom{n}{k} p^k q^{n-k}
\]

This is called the **binomial distribution**, and is parameterized by \(p \) and \(n \)
Example: *Geometric distribution.*

Suppose we repeatedly perform independent experiments, where each experiment succeeds with probability \(p \) and fails with probability \(q := 1 − p \)

Let \(X \) be the number of experiments we perform until one succeeds

For \(k = 1, 2, \ldots \)

\[
Pr[X = k] = q^{k-1}p
\]

This is called the **geometric distribution**, and is parameterized by \(p \)
Expectation

If X is a real-valued random variable:

$$E[X] := \sum_{\omega \in \Omega} X(\omega) \cdot Pr(\omega)$$

If X has image S:

$$E[X] = \sum_{s \in S} s \cdot Pr[X = s]$$

More generally, if X takes values in S and $f : S \to \mathbb{R}$:

$$E[f(X)] = \sum_{s \in S} f(s) \cdot Pr[X = s]$$

Note: $E[X]$ well-defined even for infinite Ω, assuming absolute convergence
Linearity of expectation

Theorem: if \(X \) and \(Y \) are real-valued random variables and \(a \in \mathbb{R} \), then

\[
E[X + Y] = E[X] + E[Y] \quad \text{and} \quad E[aX] = a E[X]
\]

More generally, if \(\{X_i\}_{i \in I} \) is a family of real-valued random variables:

\[
E \left[\sum_{i \in I} X_i \right] = \sum_{i \in I} E[X_i]
\]

*Note: holds even for infinite families, assuming each \(X_i \geq 0 \) and \(\sum_i X_i(\omega) \) converges for each \(\omega \in \Omega \)
Example: *uniform distribution.*

X is uniformly distributed over $\{1, \ldots, n\}$:

$$E[X] = \sum_{i=1}^{n} i \cdot \frac{1}{n} = \frac{1}{n} \sum_{i=1}^{n} i = \frac{1}{n} \cdot \frac{n(n+1)}{2} = \frac{n+1}{2}$$

Example: *Bernoulli distribution.*

$X = 1$ with probability p, $X = 0$ with probability $q := 1 - p$:

$$E[X] = 1 \cdot p + 0 \cdot q = p$$

Example: *Indicator variable.*

$X_A = 1$ with probability $\Pr[A]$, $X_A = 0$ with probability $1 - \Pr[A]$:

$$E[X_A] = \Pr[A]$$
Example: Binomial distribution.

Recall: $X = \sum_{i=1}^{n} X_i$

For $k = 0 \ldots n$, we have

$$\Pr[X = k] = \binom{n}{k} p^k q^{n-k}$$

So, $E[X] = \sum_{k=0}^{n} k \binom{n}{k} p^k q^{n-k}$

Linearity!!

$$E[X] = \sum_{i=1}^{n} E[X_i] = np$$
The tail sum formula

Theorem: If X is a random variable that takes non-negative integer values, then

$$E[X] = \sum_{i\geq 1} \Pr[X \geq i]$$

Proof by picture. Let $p_i = \Pr[X = i]$:

$$
\begin{array}{cccc}
p_1 & & & \\
p_2 & p_2 & & \\
p_3 & p_3 & p_3 & \\
\vdots & \vdots & \vdots & \ddots
\end{array}
$$

ith row sums to $i\Pr[X = i]$

ith column sums to $\Pr[X \geq i]$
Example: *Geometric distribution.*

For \(k = 1, 2, \ldots \)

\[
\Pr[X = k] = q^{k-1}p
\]

Compute: \(E[X] = \sum_{k \geq 1} kq^{k-1}p \) \ldots ?!*$#$&##^@!

Use the tail sum formula — observe

\[
\Pr[X \geq i] = q^{i-1}
\]

Therefore,

\[
E[X] = \sum_{i \geq 1} \Pr[X \geq i] = \sum_{i \geq 1} q^{i-1} = \frac{1}{1-q} = \frac{1}{p}
\]
Example: *expected minimum.*

We roll four dice. For \(i = 1, \ldots, 4 \), let \(X_i \) be the value of the \(i \)th die.

So \(X_1, \ldots, X_4 \) is a mutually independent family of random variables, where each \(X_i \) is uniformly distributed over \(\{1, \ldots, 6\} \).

Let \(M := \min(X_1, \ldots, X_4) \).

Tail sum formula:

\[
E[M] = \sum_{j=1}^{6} \Pr[M \geq j].
\]

\(M \geq j \) occurs \(\iff \) \(X_i \geq j \) for all \(i = 1, \ldots, 4 \).

By independence, we have

\[
\Pr[M \geq j] = \Pr[X_1 \geq j] \cdots \Pr[X_4 \geq j] = \left(\frac{7-j}{6}\right)^4.
\]

So we have

\[
E[M] = \sum_{j=1}^{6} \Pr[M \geq j] = \frac{6^4 + 5^4 + 4^4 + 3^4 + 2^4 + 1^4}{6^4} \approx 1.75
\]
Conditional expectation

Let \mathcal{B} be an event with $\Pr[\mathcal{B}] \neq 0$

Let X be a real-valued random variable

We can calculate the expectation of X with respect to the conditional distribution given \mathcal{B}:

$$E[X | \mathcal{B}] = \sum_{\omega \in \Omega} X(\omega) \Pr(\omega | \mathcal{B})$$

Law of total expectation: if $\{\mathcal{B}_i\}_{i \in I}$ be a partition of Ω, then

$$E[X] = \sum_{i \in I} E[X | \mathcal{B}_i] \Pr[\mathcal{B}_i]$$
Example: We roll a die
Let X denote the value of the die
Let \mathcal{A} be the event that the value is even

The distribution of X given \mathcal{A} is the uniform distribution on $\{2, 4, 6\}$, so

$$E[X | \mathcal{A}] = \frac{2 + 4 + 6}{3} = 4$$

The distribution of X given $\overline{\mathcal{A}}$ is the uniform distribution on $\{1, 3, 5\}$, so

$$E[X | \overline{\mathcal{A}}] = \frac{1 + 3 + 5}{3} = 3$$

So we have

$$E[X] = E[X | \mathcal{A}] \Pr[\mathcal{A}] + E[X | \overline{\mathcal{A}}] \Pr[\overline{\mathcal{A}}]$$

$$= 4 \cdot \frac{1}{2} + 3 \cdot \frac{1}{2} = \frac{7}{2}$$
Expectation of products

Theorem: If X and Y are *independent* real-valued random variables, then
\[E[X \cdot Y] = E[X] \cdot E[Y] \]

Example: Let X_1 and X_2 be independent random variables, each uniformly distributed over $\{0, 1\}$. Set $X := X_1 + X_2$

\[
E[X] = E[X_1] + E[X_2] = 1/2 + 1/2 = 1
\]
\[
E[X^2] = E[(X_1 + X_2)(X_1 + X_2)]
\]
\[
= E[X_1^2] + 2E[X_1]E[X_2] + E[X_2^2]
\]
\[
= 1/2 + 2 \cdot (1/4) + 1/2 = 3/2
\]

Observe: $3/2 = E[X^2] > E[X]^2 = 1$
Jensen’s inequality (special case): If X is a real-valued random variable, then
\[E[X^2] \geq E[X]^2 \]

Markov’s inequality: If X takes only non-negative real values, then for every $\alpha > 0$, we have
\[\Pr[X \geq \alpha] \leq \frac{E[X]}{\alpha} \]

Setting $\mu := E[X]$ and plugging in $\alpha := \beta \mu$, we obtain
\[\Pr[X \geq \beta \mu] \leq \frac{1}{\beta} \]