Chapter 1

Basic properties of the integers

This chapter discusses some of the basic properties of the integers, including the notions of divisibility and primality, unique factorization into primes, greatest common divisors, and least common multiples.

1.1 Divisibility and primality

A central concept in number theory is divisibility. Consider the integers $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$. For $a, b \in \mathbb{Z}$, we say that a divides b if $az = b$ for some $z \in \mathbb{Z}$. If a divides b, we write $a \mid b$, and we may say that a is a divisor of b, or that b is a multiple of a, or that b is divisible by a. If a does not divide b, then we write $a \nmid b$.

We first state some simple facts about divisibility:

Theorem 1.1. For all $a, b, c \in \mathbb{Z}$, we have

(i) $a \mid a$, $1 \mid a$, and $a \mid 0$;

(ii) $0 \mid a$ if and only if $a = 0$;

(iii) $a \mid b$ if and only if $-a \mid b$ if and only if $a \mid -b$;

(iv) $a \mid b$ and $a \mid c$ implies $a \mid (b + c)$;

(v) $a \mid b$ and $b \mid c$ implies $a \mid c$.

Proof. These properties can be easily derived from the definition of divisibility, using elementary algebraic properties of the integers. For example, $a \mid a$ because we can write $a \cdot 1 = a$; $1 \mid a$ because we can write $1 \cdot a = a$; $a \mid 0$ because we can write $a \cdot 0 = 0$. We leave it as an easy exercise for the reader to verify the remaining properties. □

We make a simple observation: if $a \mid b$ and $b \neq 0$, then $1 \leq |a| \leq |b|$. Indeed, if $az = b \neq 0$ for some integer z, then $a \neq 0$ and $z \neq 0$; it follows that $|a| \geq 1$, $|z| \geq 1$, and so $|a| \leq |a||z| = |b|$.

Theorem 1.2. For all $a, b \in \mathbb{Z}$, we have $a \mid b$ and $b \mid a$ if and only if $a = \pm b$. In particular, for every $a \in \mathbb{Z}$, we have $a \mid 1$ if and only if $a = \pm 1$.

Proof. Clearly, if $a = \pm b$, then $a \mid b$ and $b \mid a$. So let us assume that $a \mid b$ and $b \mid a$, and prove that $a = \pm b$. If either of a or b are zero, then the other must be zero as well. So assume that neither is
zero. By the above observation, \(a \mid b\) implies \(|a| \leq |b|\), and \(b \mid a\) implies \(|b| \leq |a|\); thus, \(|a| = |b|\), and so \(a = \pm b\). That proves the first statement. The second statement follows from the first by setting \(b := 1\), and noting that \(1 \mid a\). \(\Box\)

The product of any two non-zero integers is again non-zero. This implies the usual cancellation law: if \(a\), \(b\), and \(c\) are integers such that \(a \neq 0\) and \(ab = ac\), then we must have \(b = c\); indeed, \(ab = ac\) implies \(a(b - c) = 0\), and so \(a \neq 0\) implies \(b - c = 0\), and hence \(b = c\).

Primes and composites. Let \(n\) be a positive integer. Trivially, 1 and \(n\) divide \(n\). If \(n > 1\) and no other positive integers besides 1 and \(n\) divide \(n\), then we say \(n\) is prime. If \(n > 1\) but \(n\) is not prime, then we say that \(n\) is composite. The number 1 is not considered to be either prime or composite. Evidently, \(n\) is composite if and only if \(n = ab\) for some integers \(a, b\) with \(1 < a < n\) and \(1 < b < n\). The first few primes are

\[2, 3, 5, 7, 11, 13, 17, \ldots\]

While it is possible to extend the definition of prime and composite to negative integers, we shall not do so in this text: whenever we speak of a prime or composite number, we mean a positive integer.

A basic fact is that every non-zero integer can be expressed as a signed product of primes in an essentially unique way. More precisely:

Theorem 1.3 (Fundamental theorem of arithmetic). Every non-zero integer \(n\) can be expressed as

\[n = \pm p_1^{e_1} \cdots p_r^{e_r},\]

where \(p_1, \ldots, p_r\) are distinct primes and \(e_1, \ldots, e_r\) are positive integers. Moreover, this expression is unique, up to a reordering of the primes.

Note that if \(n = \pm 1\) in the above theorem, then \(r = 0\), and the product of zero terms is interpreted (as usual) as 1.

The theorem intuitively says that the primes act as the “building blocks” out of which all non-zero integers can be formed by multiplication (and negation). The reader may be so familiar with this fact that he may feel it is somehow “self evident,” requiring no proof; however, this feeling is simply a delusion, and most of the rest of this section and the next are devoted to developing a proof of this theorem. We shall give a quite leisurely proof, introducing a number of other very important tools and concepts along the way that will be useful later.

To prove Theorem 1.3, we may clearly assume that \(n\) is positive, since otherwise, we may multiply \(n\) by \(-1\) and reduce to the case where \(n\) is positive.

The proof of the existence part of Theorem 1.3 is easy. This amounts to showing that every positive integer \(n\) can be expressed as a product (possibly empty) of primes. We may prove this by induction on \(n\). If \(n = 1\), the statement is true, as \(n\) is the product of zero primes. Now let \(n > 1\), and assume that every positive integer smaller than \(n\) can be expressed as a product of primes. If \(n\) is a prime, then the statement is true, as \(n\) is the product of one prime. Assume, then, that \(n\) is composite, so that there exist \(a, b \in \mathbb{Z}\) with \(1 < a < n\), \(1 < b < n\), and \(n = ab\). By the induction hypothesis, both \(a\) and \(b\) can be expressed as a product of primes, and so the same holds for \(n\).

The uniqueness part of Theorem 1.3 is the hard part. An essential ingredient in this proof is the following:

Theorem 1.4 (Division with remainder property). Let \(a, b \in \mathbb{Z}\) with \(b > 0\). Then there exist unique \(q, r \in \mathbb{Z}\) such that \(a = bq + r\) and \(0 \leq r < b\).
Proof. Consider the set S of non-negative integers of the form $a - bt$ with $t \in \mathbb{Z}$. This set is clearly non-empty; indeed, if $a \geq 0$, set $t := 0$, and if $a < 0$, set $t := a$. Since every non-empty set of non-negative integers contains a minimum, we define r to be the smallest element of S. By definition, r is of the form $r = a - bq$ for some $q \in \mathbb{Z}$, and $r \geq 0$. Also, we must have $r < b$, since otherwise, $r - b$ would be an element of S smaller than r, contradicting the minimality of r; indeed, if $r \geq b$, then we would have $0 \leq r - b = a - b(q + 1)$.

That proves the existence of r and q. For uniqueness, suppose that $a = bq + r$ and $a = bq' + r'$, where $0 \leq r < b$ and $0 \leq r' < b$. Then subtracting these two equations and rearranging terms, we obtain

$$r' - r = b(q - q').$$

Thus, $r' - r$ is a multiple of b; however, $0 \leq r < b$ and $0 \leq r' < b$ implies $|r' - r| < b$; therefore, the only possibility is $r' - r = 0$. Moreover, $0 = b(q - q')$ and $b \neq 0$ implies $q = q' = 0$. □

Theorem 1.4 can be visualized as follows:

Starting with a, we subtract (or add, if a is negative) the value b until we end up with a number in the interval $[0, b)$.

Floors and ceilings. Let us briefly recall the usual floor and ceiling functions, denoted $\lfloor \cdot \rfloor$ and $\lceil \cdot \rceil$, respectively. These are functions from \mathbb{R} (the real numbers) to \mathbb{Z}. For $x \in \mathbb{R}$, $\lfloor x \rfloor$ is the greatest integer $m \leq x$; equivalently, $\lceil x \rceil$ is the unique integer m such that $m \leq x < m + 1$, or put another way, such that $x = m + \epsilon$ for some $\epsilon \in [0, 1)$. Also, $\lceil x \rceil$ is the smallest integer $m \geq x$; equivalently, $\lceil x \rceil$ is the unique integer m such that $m - 1 < x \leq m$, or put another way, such that $x = m - \epsilon$ for some $\epsilon \in [0, 1)$.

The mod operator. Now let $a, b \in \mathbb{Z}$ with $b > 0$. If q and r are the unique integers from Theorem 1.4 that satisfy $a = bq + r$ and $0 \leq r < b$, we define

$$a \mod b := r;$$

that is, $a \mod b$ denotes the remainder in dividing a by b. It is clear that $b \mid a$ if and only if $a \mod b = 0$. Dividing both sides of the equation $a = bq + r$ by b, we obtain $a/b = q + r/b$. Since $q \in \mathbb{Z}$ and $r/b \in [0, 1)$, we see that $q = \lfloor a/b \rfloor$. Thus,

$$(a \mod b) = a - b\lfloor a/b \rfloor.$$

One can use this equation to extend the definition of $a \mod b$ to all integers a and b, with $b \neq 0$; that is, for $b < 0$, we simply define $a \mod b$ to be $a - b\lfloor a/b \rfloor$.

Theorem 1.4 may be generalized so that when dividing an integer a by a positive integer b, the remainder is placed in an interval other than $[0, b)$. Let x be any real number, and consider the interval $[x, x + b)$. As the reader may easily verify, this interval contains precisely b integers, namely, $[x], \ldots, [x] + b - 1$. Applying Theorem 1.4 with $a = [x]$ in place of a, we obtain:

Theorem 1.5. Let $a, b \in \mathbb{Z}$ with $b > 0$, and let $x \in \mathbb{R}$. Then there exist unique $q, r \in \mathbb{Z}$ such that $a = bq + r$ and $r \in [x, x + b)$.
Exercise 1.1. Let \(a, b, d \in \mathbb{Z} \) with \(d \neq 0 \). Show that \(a \mid b \) if and only if \(da \mid db \).

Exercise 1.2. Let \(n \) be a composite integer. Show that there exists a prime \(p \) dividing \(n \), with \(p \leq n^{1/2} \).

Exercise 1.3. Let \(m \) be a positive integer. Show that for every real number \(x \geq 1 \), the number of multiples of \(m \) in the interval \([1, x]\) is \(\lfloor x/m \rfloor \); in particular, for every integer \(n \geq 1 \), the number of multiples of \(m \) among \(1, \ldots, n \) is \(\lfloor n/m \rfloor \).

Exercise 1.4. Let \(x \in \mathbb{R} \). Show that \(2\lfloor x \rfloor \leq \lfloor 2x \rfloor \leq 2\lfloor x \rfloor + 1 \).

Exercise 1.5. Let \(x \in \mathbb{R} \) and \(n \in \mathbb{Z} \) with \(n > 0 \). Show that \(\lfloor \lfloor x \rfloor /n \rfloor = \lfloor x/n \rfloor \); in particular, \(\lfloor [a/b]/c \rfloor = \lfloor a/bc \rfloor \) for all positive integers \(a, b, c \).

Exercise 1.6. Let \(a, b \in \mathbb{Z} \) with \(b < 0 \). Show that \((a \mod b) \in (b, 0) \).

Exercise 1.7. Show that Theorem 1.5 also holds for the interval \((x, x+b] \). Does it hold in general for the intervals \([x, x+b] \) or \((x, x+b)\)?

1.2 Ideals and greatest common divisors

To carry on with the proof of Theorem 1.3, we introduce the notion of an ideal of \(\mathbb{Z} \), which is a non-empty set of integers that is closed under addition, and closed under multiplication by an arbitrary integer. That is, a non-empty set \(I \subseteq \mathbb{Z} \) is an ideal if and only if for all \(i, i' \in I \) and all \(z \in \mathbb{Z} \), we have
\[i + i' \in I \quad \text{and} \quad iz \in I. \]

Besides its utility in proving Theorem 1.3, the notion of an ideal is quite useful in a number of contexts, which will be explored later.

Example 1.1. The set \(\{0\} \) is an ideal, since \(0 + 0 = 0 \) and \(0 \cdot z = 0 \) for all \(z \in \mathbb{Z} \).

In fact, every ideal must contain 0. Indeed, if \(I \) is an ideal, it must be non-empty, so \(I \) must contain some integer \(a \); by the multiplicative closure property, \(I \) must also contain \(a \cdot 0 = 0 \). \(\square \)

Example 1.2. The set \(\mathbb{Z} \) is an ideal.

An interesting fact is that for any ideal \(I \), we have \(I = \mathbb{Z} \) if and only if \(1 \in I \). Indeed, on the one hand, if \(I = \mathbb{Z} \), then \(I \) contains every integer, including 1. On the other hand, if \(1 \in I \), then by the multiplicative closure property, for every \(z \in \mathbb{Z} \), we have \(z = 1 \cdot z \in I \), which means \(I = \mathbb{Z} \). \(\square \)

Example 1.3. For \(a \in \mathbb{Z} \), we define
\[a\mathbb{Z} := \{as : s \in \mathbb{Z}\}. \]

That is, \(a\mathbb{Z} \) is the set of all integer multiples of \(a \). It is not hard to see that \(a\mathbb{Z} \) is an ideal. To see why, let us consider both closure properties. For the additive closure property, suppose \(i, i' \in a\mathbb{Z} \). This means \(i = as \) and \(i' = as' \) for some integers \(s \) and \(s' \). So
\[i + i' = as + as' = a(s + s'), \]
and therefore \(i + i' \) is also an integer multiple of \(a \), and hence is in \(a\mathbb{Z} \). For the multiplicative closure property, if \(z \in \mathbb{Z} \), then we have
\[iz = (as)z = a(sz), \]
and therefore \(iz \) is also an integer multiple of \(a \), and hence is in \(a\mathbb{Z} \).

Note that \(a\mathbb{Z} \) contains \(a \), since \(a = a \cdot 1 \). The ideal \(a\mathbb{Z} \) is called the ideal generated by \(a \). This ideal is the smallest ideal that contains \(a \), since any ideal containing \(a \) must contain all integer multiples of \(a \). Any ideal of the form \(a\mathbb{Z} \) for some \(a \in \mathbb{Z} \) is called a principal ideal. \(\square \)

Example 1.4. Consider the principal ideal \(3\mathbb{Z} \). This consists of all multiples of 3; that is, \(3\mathbb{Z} = \{\ldots, -9, -6, -3, 0, 3, 6, 9, \ldots\} \). \(\square \)

Example 1.5. The ideal \(\{0\} \) is a principal ideal: \(\{0\} = 0\mathbb{Z} \). \(\square \)

Example 1.6. The ideal \(\mathbb{Z} \) is a principal ideal: \(\mathbb{Z} = 1\mathbb{Z} \). \(\square \)

Example 1.7. For \(a, b \in \mathbb{Z} \), we define

\[
a\mathbb{Z} + b\mathbb{Z} := \{as + bt : s, t \in \mathbb{Z}\}.
\]

That is, \(a\mathbb{Z} + b\mathbb{Z} \) is the set of all integer linear combinations of \(a \) and \(b \). We show that \(a\mathbb{Z} + b\mathbb{Z} \) is an ideal. For the additive closure property, suppose \(i, i' \in a\mathbb{Z} + b\mathbb{Z} \). This means \(i = as + bt \) and \(i' = as' + bt' \) for some integers \(s, t, s', t' \). So

\[
i + i' = as + bt + as' + bt' = a(s + s') + b(t + t'),
\]

and therefore \(i + i' \) is also in \(a\mathbb{Z} + b\mathbb{Z} \). For the multiplicative closure property, if \(z \in \mathbb{Z} \), then we have

\[
iz = (as + bt)z = a(sz) + b(tz),
\]

and therefore \(iz \) is also in \(a\mathbb{Z} + b\mathbb{Z} \).

Note that \(a\mathbb{Z} + b\mathbb{Z} \) contains both \(a \) and \(b \), since \(a = a \cdot 1 + b \cdot 0 \) and \(b = a \cdot 0 + b \cdot 1 \). The ideal \(a\mathbb{Z} + b\mathbb{Z} \) is called the ideal generated by \(a \) and \(b \). This ideal is the smallest ideal that contains both \(a \) and \(b \), since any ideal containing \(a \) and \(b \) must also contain all integer linear combinations of \(a \) and \(b \). \(\square \)

Example 1.8. Consider the ideal \(3\mathbb{Z} + 5\mathbb{Z} \). This ideal contains \(3 \cdot 2 + 5 \cdot (-1) = 1 \). Since it contains 1, it contains all integers; that is, \(3\mathbb{Z} + 5\mathbb{Z} = \mathbb{Z} \). \(\square \)

Example 1.9. Consider the ideal \(4\mathbb{Z} + 6\mathbb{Z} \). This ideal contains \(4 \cdot (-1) + 6 \cdot 1 = 2 \), and therefore, it contains all even integers. It does not contain any odd integers, since the sum of two even integers is again even. Thus, \(4\mathbb{Z} + 6\mathbb{Z} = 2\mathbb{Z} \). \(\square \)

In the previous two examples, we defined an ideal that turned out upon closer inspection to be a principal ideal. This was no accident: the following theorem says that all ideals of \(\mathbb{Z} \) are principal.

Theorem 1.6. Let \(I \) be an ideal of \(\mathbb{Z} \). Then there exists a unique non-negative integer \(d \) such that \(I = d\mathbb{Z} \).

Proof. We first prove the existence part of the theorem. If \(I = \{0\} \), then \(d = 0 \) does the job, so let us assume that \(I \neq \{0\} \). Since \(I \) contains non-zero integers, it must contain positive integers, since if \(a \in I \) then so is \(-a\). Let \(d \) be the smallest positive integer in \(I \). We want to show that \(I = d\mathbb{Z} \).

We first show that \(I \subseteq d\mathbb{Z} \). To this end, let \(a \) be any element in \(I \). It suffices to show that \(d \mid a \). Using the division with remainder property, write \(a = dq + r \), where \(0 \leq r < d \). Then by the closure properties of ideals, one sees that \(r = a + d(-q) \) is also an element of \(I \), and by the minimality of the choice of \(d \), we must have \(r = 0 \). Thus, \(d \mid a \).
We have shown that $I \subseteq d\mathbb{Z}$. To see that $d\mathbb{Z} \subseteq I$, observe that $d \in I$, and hence all integer multiples of d must also be in I. Thus, $I = d\mathbb{Z}$.

That proves the existence part of the theorem. For uniqueness, note that if $d\mathbb{Z} = e\mathbb{Z}$ for some non-negative integer e, then $d \mid e$ and $e \mid d$, from which it follows by Theorem 1.2 that $d = \pm e$; since d and e are non-negative, we must have $d = e$. □

Greatest common divisors. For $a, b \in \mathbb{Z}$, we call $d \in \mathbb{Z}$ a common divisor of a and b if $d \mid a$ and $d \mid b$; moreover, we call such a d a greatest common divisor of a and b if d is non-negative and all other common divisors of a and b divide d.

Theorem 1.7. For all $a, b \in \mathbb{Z}$, there exists a unique greatest common divisor d of a and b, and moreover, $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$.

Proof. We apply the previous theorem to the ideal $I := a\mathbb{Z} + b\mathbb{Z}$. Let $d \in \mathbb{Z}$ with $I = d\mathbb{Z}$, as in that theorem. We wish to show that d is a greatest common divisor of a and b. Note that $a, b, d \in I$ and d is non-negative.

Since $a \in I = d\mathbb{Z}$, we see that $d \mid a$; similarly, $d \mid b$. So we see that d is a common divisor of a and b.

Since $d \in I = a\mathbb{Z} + b\mathbb{Z}$, there exist $s, t \in \mathbb{Z}$ such that $as + bt = d$. Now suppose $a = a'd'$ and $b = b'd'$ for some $a', b', d' \in \mathbb{Z}$. Then the equation $as + bt = d$ implies that $d'(a's + b't) = d$, which says that $d' \mid d$. Thus, any common divisor d' of a and b divides d.

That proves that d is a greatest common divisor of a and b. For uniqueness, note that if e is a greatest common divisor of a and b, then $d \mid e$ and $e \mid d$, and hence $d = \pm e$; since both d and e are non-negative by definition, we have $d = e$. □

For $a, b \in \mathbb{Z}$, we write $\gcd(a, b)$ for the greatest common divisor of a and b. We say that $a, b \in \mathbb{Z}$ are relatively prime if $\gcd(a, b) = 1$, which is the same as saying that the only common divisors of a and b are ± 1.

The following is essentially just a restatement of Theorem 1.7, but we state it here for emphasis:

Theorem 1.8. Let $a, b, r \in \mathbb{Z}$ and let $d := \gcd(a, b)$. Then there exist $s, t \in \mathbb{Z}$ such that $as + bt = r$ if and only if $d \mid r$. In particular, a and b are relatively prime if and only if there exist integers s and t such that $as + bt = 1$.

Proof. We have

\[
 as + bt = r \quad \text{for some } s, t \in \mathbb{Z}
\]

\[
 \iff r \in a\mathbb{Z} + b\mathbb{Z}
\]

\[
 \iff r \in d\mathbb{Z} \quad \text{(by Theorem 1.7)}
\]

\[
 \iff d \mid r.
\]

That proves the first statement. The second statement follows from the first, setting $r := 1$. □

Note that as we have defined it, $\gcd(0, 0) = 0$. Also note that when at least one of a or b are non-zero, $\gcd(a, b)$ may be characterized as the largest positive integer that divides both a and b, and as the smallest positive integer that can be expressed as $as + bt$ for integers s and t.

Theorem 1.9. Let $a, b, c \in \mathbb{Z}$ such that $c \mid ab$ and $\gcd(a, c) = 1$. Then $c \mid b$.

6
Proof. Suppose that \(c \mid ab \) and \(\gcd(a, c) = 1 \). Then since \(\gcd(a, c) = 1 \), by Theorem 1.8 we have \(as + ct = 1 \) for some \(s, t \in \mathbb{Z} \). Multiplying this equation by \(b \), we obtain
\[
abs + cbt = b. \tag{1.1}
\]
Since \(c \) divides \(ab \) by hypothesis, and since \(c \) clearly divides \(cbt \), it follows that \(c \) divides the left-hand side of (1.1), and hence that \(c \) divides \(b \). □

Suppose that \(p \) is a prime and \(a \) is any integer. As the only divisors of \(p \) are \(\pm 1 \) and \(\pm p \), we have
\[
p \mid a \quad \implies \quad \gcd(a, p) = p,
\]
and
\[
p \nmid a \quad \implies \quad \gcd(a, p) = 1.
\]
Combining this observation with the previous theorem, we have:

Theorem 1.10. Let \(p \) be prime, and let \(a, b \in \mathbb{Z} \). Then \(p \mid ab \) implies that \(p \mid a \) or \(p \mid b \).

Proof. Assume that \(p \mid ab \). If \(p \mid a \), we are done, so assume that \(p \nmid a \). By the above observation, \(\gcd(a, p) = 1 \), and so by Theorem 1.9, we have \(p \mid b \). □

An obvious corollary to Theorem 1.10 is that if \(a_1, \ldots, a_k \) are integers, and if \(p \) is a prime that divides the product \(a_1 \cdots a_k \), then \(p \mid a_i \) for some \(i = 1, \ldots, k \). This is easily proved by induction on \(k \). For \(k = 1 \), the statement is trivially true. Now let \(k > 1 \), and assume that statement holds for \(k - 1 \). Then by Theorem 1.10, either \(p \mid a_1 \) or \(p \mid a_2 \cdots a_k \); if \(p \mid a_1 \), we are done; otherwise, by induction, \(p \) divides one of \(a_2, \ldots, a_k \).

Finishing the proof of Theorem 1.3. We are now in a position to prove the uniqueness part of Theorem 1.3, which we can state as follows: if \(p_1, \ldots, p_r \) are primes (not necessarily distinct), and \(q_1, \ldots, q_s \) are primes (also not necessarily distinct), such that
\[
p_1 \cdots p_r = q_1 \cdots q_s, \tag{1.2}
\]
then \((p_1, \ldots, p_r)\) is just a reordering of \((q_1, \ldots, q_s)\). We may prove this by induction on \(r \). If \(r = 0 \), we must have \(s = 0 \) and we are done. Now suppose \(r > 0 \), and that the statement holds for \(r - 1 \). Since \(r > 0 \), we clearly must have \(s > 0 \). Also, as \(p_1 \) obviously divides the left-hand side of (1.2), it must also divide the right-hand side of (1.2); that is, \(p_1 \mid q_1 \cdots q_s \). It follows from (the corollary to) Theorem 1.10 that \(p_1 \mid q_j \) for some \(j = 1, \ldots, s \), and moreover, since \(q_j \) is prime, we must have \(p_1 = q_j \). Thus, we may cancel \(p_1 \) from the left-hand side of (1.2) and \(q_j \) from the right-hand side of (1.2), and the statement now follows from the induction hypothesis. That proves the uniqueness part of Theorem 1.3.

Exercise 1.8. Let \(I \) be a non-empty set of integers that is closed under addition (i.e., \(a + b \in I \) for all \(a, b \in I \)). Show that \(I \) is an ideal if and only if \(-a \in I \) for all \(a \in I \).

Exercise 1.9. Show that for all integers \(a, b, c \), we have:

(a) \(\gcd(a, b) = \gcd(b, a) \);
(b) \(\gcd(a, b) = \lvert a \rvert \iff a \mid b \);
(c) \(\gcd(a, 0) = \gcd(a, a) = \lvert a \rvert \) and \(\gcd(a, 1) = 1 \);
Exercise 1.10. Show that for all integers \(a, b \) with \(d := \gcd(a, b) \neq 0 \), we have \(\gcd(a/d, b/d) = 1 \).

Exercise 1.11. Let \(n \) be an integer. Show that if \(a, b \) are relatively prime integers, each of which divides \(n \), then \(ab \) divides \(n \).

Exercise 1.12. Show that two integers are relatively prime if and only if there is no one prime that divides both of them.

Exercise 1.13. Let \(a, b_1, \ldots, b_k \) be integers. Show that \(\gcd(a, b_1 \cdots b_k) = 1 \) if and only if \(\gcd(a, b_i) = 1 \) for \(i = 1, \ldots, k \).

Exercise 1.14. Let \(p \) be a prime and \(k \) an integer, with \(0 < k < p \). Show that the binomial coefficient

\[
\binom{p}{k} = \frac{p!}{k!(p-k)!},
\]

which is an integer, is divisible by \(p \).

Exercise 1.15. An integer \(a \) is called \textbf{square-free} if it is not divisible by the square of any integer greater than 1. Show that:

(a) \(a \) is square-free if and only if \(a = \pm p_1 \cdots p_r \), where the \(p_i \)'s are distinct primes;

(b) every positive integer \(n \) can be expressed uniquely as \(n = ab^2 \), where \(a \) and \(b \) are positive integers, and \(a \) is square-free.

Exercise 1.16. For each positive integer \(m \), let \(I_m \) denote \(\{0, \ldots, m - 1\} \). Let \(a, b \) be positive integers, and consider the map

\[
\tau : I_b \times I_a \to I_{ab}
\]

\[
(s, t) \mapsto (as + bt) \mod ab.
\]

Show \(\tau \) is a bijection if and only if \(\gcd(a, b) = 1 \).

Exercise 1.17. Let \(a, b, c \) be positive integers satisfying \(\gcd(a, b) = 1 \) and \(c \geq (a-1)(b-1) \). Show that there exist \textbf{non-negative} integers \(s, t \) such that \(c = as + bt \).

Exercise 1.18. For each positive integer \(n \), let \(D_n \) denote the set of positive divisors of \(n \). Let \(n_1, n_2 \) be relatively prime, positive integers. Show that the sets \(D_{n_1} \times D_{n_2} \) and \(D_{n_1n_2} \) are in one-to-one correspondence, via the map that sends \((d_1, d_2) \in D_{n_1} \times D_{n_2} \) to \(d_1 d_2 \).

1.3 Some consequences of unique factorization

The following theorem is a consequence of just the existence part of Theorem 1.3:

Theorem 1.11. There are infinitely many primes.

Proof. By way of contradiction, suppose that there were only finitely many primes; call them \(p_1, \ldots, p_k \). Then set \(M := \prod_{i=1}^{k} p_i \) and \(N := M + 1 \). Consider a prime \(p \) that divides \(N \). There must be at least one such prime \(p \), since \(N \geq 2 \), and every positive integer can be written as a product of primes. Clearly, \(p \) cannot equal any of the \(p_i \)'s, since if it did, then \(p \) would divide \(M \), and hence also divide \(N - M = 1 \), which is impossible. Therefore, the prime \(p \) is not among \(p_1, \ldots, p_k \), which contradicts our assumption that these are the only primes. \(\square \)
For each prime p, we may define the function ν_p, mapping non-zero integers to non-negative integers, as follows: for every integer $n \neq 0$, if $n = p^e m$, where $p \nmid m$, then $\nu_p(n) := e$. We may then write the factorization of n into primes as

$$n = \pm \prod_p p^{\nu_p(n)},$$

where the product is over all primes p; although syntactically this is an infinite product, all but finitely many of its terms are equal to 1, and so this expression makes sense.

Observe that if a and b are non-zero integers, then

$$\nu_p(a \cdot b) = \nu_p(a) + \nu_p(b) \quad \text{for all primes } p,$$

(1.3)

and

$$a \mid b \iff \nu_p(a) \leq \nu_p(b) \quad \text{for all primes } p.$$

(1.4)

From this, it is clear that

$$\gcd(a, b) = \prod_p p^{\min(\nu_p(a), \nu_p(b))},$$

Least common multiples. For $a, b \in \mathbb{Z}$, a common multiple of a and b is an integer m such that $a \mid m$ and $b \mid m$; moreover, such an m is the least common multiple of a and b if m is non-negative and m divides all common multiples of a and b. It is easy to see that the least common multiple exists and is unique, and we denote the least common multiple of a and b by $\text{lcm}(a, b)$. Indeed, for all $a, b \in \mathbb{Z}$, if either a or b are zero, the only common multiple of a and b is 0, and so $\text{lcm}(a, b) = 0$; otherwise, if neither a nor b are zero, we have

$$\text{lcm}(a, b) = \prod_p p^{\max(\nu_p(a), \nu_p(b))},$$

or equivalently, $\text{lcm}(a, b)$ may be characterized as the smallest positive integer divisible by both a and b.

It is convenient to extend the domain of definition of ν_p to include 0, defining $\nu_p(0) := \infty$. If we interpret expressions involving “∞” appropriately, then for arbitrary $a, b \in \mathbb{Z}$, both (1.3) and (1.4) hold, and in addition,

$$\nu_p(\gcd(a, b)) = \min(\nu_p(a), \nu_p(b)) \quad \text{and} \quad \nu_p(\text{lcm}(a, b)) = \max(\nu_p(a), \nu_p(b))$$

for all primes p.

Generalizing gcd’s and lcm’s to many integers. It is easy to generalize the notions of greatest common divisor and least common multiple from two integers to many integers. Let a_1, \ldots, a_k be integers. We call $d \in \mathbb{Z}$ a common divisor of a_1, \ldots, a_k if $d \mid a_i$ for $i = 1, \ldots, k$; moreover, we call such a d the greatest common divisor of a_1, \ldots, a_k if d is non-negative and all other common divisors of a_1, \ldots, a_k divide d. The greatest common divisor of a_1, \ldots, a_k is denoted $\gcd(a_1, \ldots, a_k)$ and is the unique non-negative integer d satisfying

$$\nu_p(d) = \min(\nu_p(a_1), \ldots, \nu_p(a_k)) \quad \text{for all primes } p.$$

\footnote{The interpretation given to such expressions should be obvious: for example, for every $x \in \mathbb{R}$, we have $-\infty < x < \infty$, $x + \infty = \infty$, $x - \infty = -\infty$, $\infty + \infty = \infty$, and $(-\infty) + (-\infty) = -\infty$. Expressions such as $x \cdot (\pm \infty)$ also make sense, provided $x \neq 0$. However, the expressions $\infty - \infty$ and $0 \cdot \infty$ have no sensible interpretation.}
Analogously, we call \(m \in \mathbb{Z} \) a common multiple of \(a_1, \ldots, a_k \) if \(a_i \mid m \) for all \(i = 1, \ldots, k \); moreover, such an \(m \) is called the least common multiple of \(a_1, \ldots, a_k \) if \(m \) divides all common multiples of \(a_1, \ldots, a_k \). The least common multiple of \(a_1, \ldots, a_k \) is denoted \(\text{lcm}(a_1, \ldots, a_k) \) and is the unique non-negative integer \(m \) satisfying

\[
\nu_p(m) = \max(\nu_p(a_1), \ldots, \nu_p(a_k)) \text{ for all primes } p.
\]

Finally, we say that the family \(\{a_i\}_{i=1}^k \) is pairwise relatively prime if for all indices \(i, j \) with \(i \neq j \), we have \(\gcd(a_i, a_j) = 1 \). Certainly, if \(\{a_i\}_{i=1}^k \) is pairwise relatively prime, and \(k > 1 \), then \(\gcd(a_1, \ldots, a_k) = 1 \); however, \(\gcd(a_1, \ldots, a_k) = 1 \) does not imply that \(\{a_i\}_{i=1}^k \) is pairwise relatively prime.

Rational numbers. Consider the rational numbers \(\mathbb{Q} = \{a/b : a, b \in \mathbb{Z}, b \neq 0\} \). Given any rational number \(a/b \), if we set \(d := \gcd(a, b) \), and define the integers \(a_0 := a/d \) and \(b_0 := b/d \), then we have \(a/b = a_0/b_0 \) and \(\gcd(a_0, b_0) = 1 \). Moreover, if \(a_1/b_1 = a_0/b_0 \), then we have \(a_1b_0 = a_0b_1 \), and so \(b_0 \mid a_0b_1 \); also, since \(\gcd(a_0, b_0) = 1 \), we see that \(b_0 \mid b_1 \); writing \(b_1 = b_0c \), we see that \(a_1 = a_0c \). Thus, we can represent every rational number as a fraction in lowest terms, which means a fraction of the form \(a_0/b_0 \) where \(a_0 \) and \(b_0 \) are relatively prime; moreover, the values of \(a_0 \) and \(b_0 \) are uniquely determined up to sign, and every other fraction that represents the same rational number is of the form \(a_0c/b_0c \), for some non-zero integer \(c \).

Exercise 1.19. Let \(n \) be an integer. Generalizing Exercise 1.11, show that if \(\{a_i\}_{i=1}^k \) is a pairwise relatively prime family of integers, where each \(a_i \) divides \(n \), then their product \(\prod_{i=1}^k a_i \) also divides \(n \).

Exercise 1.20. Show that for all integers \(a, b, c \), we have:

1. \(\text{lcm}(a, b) = \text{lcm}(b, a) \);
2. \(\text{lcm}(a, b) = |a| \iff b \mid a \);
3. \(\text{lcm}(a, a) = \text{lcm}(a, 1) = |a| \);
4. \(\text{lcm}(ca, cb) = |c| \text{lcm}(a, b) \).

Exercise 1.21. Show that for all integers \(a, b \), we have:

1. \(\gcd(a, b) \cdot \text{lcm}(a, b) = |ab| \);
2. \(\gcd(a, b) = 1 \implies \text{lcm}(a, b) = |ab| \).

Exercise 1.22. Let \(a_1, \ldots, a_k \in \mathbb{Z} \) with \(k > 1 \). Show that:

\[
\gcd(a_1, \ldots, a_k) = \gcd(a_1, \gcd(a_2, \ldots, a_k)) = \gcd(\gcd(a_1, \ldots, a_{k-1}), a_k);
\]

\[
\text{lcm}(a_1, \ldots, a_k) = \text{lcm}(a_1, \text{lcm}(a_2, \ldots, a_k)) = \text{lcm}(\text{lcm}(a_1, \ldots, a_{k-1}), a_k).
\]

Exercise 1.23. For \(a_1, \ldots, a_k \in \mathbb{Z} \), define

\[
a_1\mathbb{Z} + \cdots + a_k\mathbb{Z} := \{a_1s_1 + \cdots + a ks_k : s_1, \ldots, s_k \in \mathbb{Z}\}.
\]

Show that \(a_1\mathbb{Z} + \cdots + a_k\mathbb{Z} \) is an ideal.
Exercise 1.24. Let \(a_1, \ldots, a_k \in \mathbb{Z} \) with \(d := \gcd(a_1, \ldots, a_k) \). Show that \(d\mathbb{Z} = a_1\mathbb{Z} + \cdots + a_k\mathbb{Z} \) (see previous exercise), and conclude that there exist integers \(s_1, \ldots, s_k \) such that \(d = a_1 s_1 + \cdots + a_k s_k \).

Exercise 1.25. Show that if \(\{a_i\}_{i=1}^k \) is a pairwise relatively prime family of integers, then \(\text{lcm}(a_1, \ldots, a_k) = \vert a_1 \cdots a_k \vert \).

Exercise 1.26. Show that every non-zero \(x \in \mathbb{Q} \) can be expressed as
\[
x = \pm p_1^{e_1} \cdots p_r^{e_r},
\]
where the \(p_i \)'s are distinct primes and the \(e_i \)'s are non-zero integers, and that this expression is unique up to a reordering of the primes.

Exercise 1.27. Let \(n \) and \(k \) be positive integers, and suppose \(x \in \mathbb{Q} \) such that \(x^k = n \) for some \(x \in \mathbb{Q} \). Show that \(x \in \mathbb{Z} \). In other words, \(\sqrt{k}n \) is either an integer or is irrational.

Exercise 1.28. Show that \(\gcd(a+b, \text{lcm}(a,b)) = \gcd(a,b) \) for all \(a, b \in \mathbb{Z} \).

Exercise 1.29. Show that for every positive integer \(k \), there exist \(k \) consecutive composite integers. Thus, there are arbitrarily large gaps between primes.

Exercise 1.30. Let \(p \) be a prime. Show that for all \(a, b \in \mathbb{Z} \), we have \(\nu_p(a+b) \geq \min\{\nu_p(a), \nu_p(b)\} \), and \(\nu_p(a+b) = \nu_p(a) \) if \(\nu_p(a) < \nu_p(b) \).

Exercise 1.31. For a given prime \(p \), we may extend the domain of definition of \(\nu_p \) from \(\mathbb{Z} \) to \(\mathbb{Q} \): for non-zero integers \(a, b \), let us define \(\nu_p(a/b) := \nu_p(a) - \nu_p(b) \). Show that:

(a) this definition of \(\nu_p(a/b) \) is unambiguous, in the sense that it does not depend on the particular choice of \(a \) and \(b \);

(b) for all \(x, y \in \mathbb{Q} \), we have \(\nu_p(xy) = \nu_p(x) + \nu_p(y) \);

(c) for all \(x, y \in \mathbb{Q} \), we have \(\nu_p(x+y) \geq \min\{\nu_p(x), \nu_p(y)\} \), and \(\nu_p(x+y) = \nu_p(x) \) if \(\nu_p(x) < \nu_p(y) \);

(d) for all non-zero \(x \in \mathbb{Q} \), we have \(x = \pm \prod_p p^{\nu_p(x)} \), where the product is over all primes, and all but a finite number of terms in the product are equal to 1;

(e) for all \(x \in \mathbb{Q} \), we have \(x \in \mathbb{Z} \) if and only if \(\nu_p(x) \geq 0 \) for all primes \(p \).

Exercise 1.32. Let \(n \) be a positive integer, and let \(2^k \) be the highest power of 2 in the set \(S := \{1, \ldots, n\} \). Show that \(2^k \) does not divide any other element in \(S \).

Exercise 1.33. Let \(n \in \mathbb{Z} \) with \(n > 1 \). Show that \(\sum_{i=1}^n 1/i \) is not an integer.

Exercise 1.34. Let \(n \) be a positive integer, and let \(C_n \) denote the number of pairs of integers \((a, b) \) with \(a, b \in \{1, \ldots, n\} \) and \(\gcd(a, b) = 1 \), and let \(F_n \) be the number of distinct rational numbers \(a/b \), where \(0 \leq a < b \leq n \).

(a) Show that \(F_n = (C_n + 1)/2 \).

(b) Show that \(C_n \geq n^2/4 \). Hint: first show that \(C_n \geq n^2(1 - \sum_{d \geq 2} 1/d^2) \), and then show that \(\sum_{d \geq 2} 1/d^2 \leq 3/4 \).

Exercise 1.35. This exercise develops a characterization of least common multiples in terms of ideals.
(a) Arguing directly from the definition of an ideal, show that if I and J are ideals of \mathbb{Z}, then so is $I \cap J$.

(b) Let $a, b \in \mathbb{Z}$, and consider the ideals $I := a\mathbb{Z}$ and $J := b\mathbb{Z}$. By part (a), we know that $I \cap J$ is an ideal. By Theorem 1.6, we know that $I \cap J = m\mathbb{Z}$ for some uniquely determined non-negative integer m. Show that $m = \text{lcm}(a, b)$.

1.4 Euclid’s algorithm

Consider the following problem: given two non-negative integers a and b, compute their greatest common divisor, gcd(a, b). We can do this using the well-known Euclidean algorithm, also called Euclid’s algorithm.

The basic idea is the following. Without loss of generality, we may assume that $a \geq b \geq 0$. If $b = 0$, then there is nothing to do, since in this case, gcd($a, 0$) = a. Otherwise, $b > 0$, and we can compute the integer quotient $q := \lfloor a/b \rfloor$ and remainder $r := a \mod b$, where $0 \leq r < b$. From the equation

$$a = bq + r,$$

it is easy to see that if an integer d divides both b and r, then it also divides a; likewise, if an integer d divides a and b, then it also divides r. From this observation, it follows that gcd(a, b) = gcd(b, r), and so by performing a division, we reduce the problem of computing gcd(a, b) to the “smaller” problem of computing gcd(b, r).

This suggests the following recursive algorithm:

\textbf{Algorithm} Euclid(a, b): On input a, b, where a and b are integers such that $a \geq b \geq 0$, compute gcd(a, b) as follows:

\begin{itemize}
 \item if $b = 0$
 \begin{itemize}
 \item then return a
 \end{itemize}
 \item else return Euclid($b, a \mod b$)
\end{itemize}

\textbf{Example 1.10.} Suppose $a = 100$ and $b = 35$. We compute the numbers (a_i, b_i) that are the inputs to the ith recursive call to Euclid:

\begin{center}
\begin{tabular}{c|ccc}
 i & 0 & 1 & 2 & 3 \\
 \hline
 a_i & 100 & 35 & 30 & 5 \\
 b_i & 35 & 30 & 5 & 0
\end{tabular}
\end{center}

So we have gcd(a, b) = $a_3 = 5$. \hfill \square

To actually implement this algorithm on a computer, one has to consider the size of the integers a and b. If they are small enough to fit into a single machine “word” (typically 64- or 32-bits), then there is no issue. Otherwise, one needs to represent these large integers as vectors of machine words, and implement all of the basic arithmetic operations (addition, subtraction, multiplication, and division) in software. Some programming languages implement these operations as part of a standard library, while others do not.

In these notes, we will not worry about how these basic arithmetic operations are implemented. Rather, we will focus our attention to how many division steps are performed by Euclid’s algorithm. Observe that when called on input (a, b), with $b > 0$, the algorithm performs one division step, and then calls itself recursively on input (a', b'), where $a' := b$ and $b' := a \mod b$. In particular, $b > b'$. So in every recursive call, the second argument decreases by at least 1. It follows that
the algorithm performs at most b division steps in total. However, it turns out that the algorithm terminates much faster than this:

Theorem 1.12. On input (a, b), Euclid’s algorithm performs $O(\log b)$ division steps.

Proof. As observed above, if $b > 0$, the algorithm performs one division step, and then calls itself recursively on input (a', b'), where $a' := b$ and $b' := a \mod b$, so that $b > b'$. If $b' > 0$, the algorithm performs another division step, and calls itself again on input (a'', b''), where $a'' := b'$ and $b'' := b \mod b'$, so that $b' > b''$. Consider the quotient $q' := \lfloor b / b' \rfloor$. Since $b > b'$, we have $q' \geq 1$. Moreover, since $b = b'q' + b''$ and $b' > b''$, we have

$$b = b'q' + b'' \geq b' + b'' > 2b''.$$

This shows that after two division steps, the second argument to Euclid, is less than $b/2$, and so, after $2k$ division step, it is less than $b/2^k$. So if we choose k large enough so that $b/2^k \leq 1$, we can be sure that the number division steps is at most $2k$. Setting $k := \lceil \log_2 b \rceil$ does the job. □

Theorem 1.8 tells us that if $d = \gcd(a, b)$, then there exist integers s and t such that $as + bt = d$. Euclid’s algorithm can be easily extended to compute these coefficients s and t.

Again, assume that $a \geq b \geq 0$. If $b = 0$, then $d = a$, if we set $s := 1$ and $t := 0$, then $as + bt = d$, as required. Otherwise, suppose $b > 0$, and we have divide a by b, computing the quotient q and remainder r:

$$a = bq + r.$$

Assume that we have recursively computed $d = \gcd(b, r)$ as well as s' and t' such that

$$bs' + rt' = d.$$

If we substitute r by $a - bq$ in this equation, and rearrange terms, we obtain

$$at' + b(s' - qt') = d.$$

Thus, $s := t'$ and $t := s' - qt'$ do the job.

Here is the entire algorithm **extended Euclidean algorithm**:

Algorithm ExtEuclid(a, b): On input a, b, where a and b are integers such that $a \geq b \geq 0$, compute (d, s, t), where $d = \gcd(a, b)$ and s and t are integers such that $as + bt = d$, as follows:

- if $b = 0$ then
 - $d \leftarrow a$, $s \leftarrow 1$, $t \leftarrow 0$
- else
 - $q \leftarrow \lfloor a / b \rfloor$, $r \leftarrow a \mod b$
 - $(d', s', t') \leftarrow \text{ExtEuclid}(b, r)$
 - $s \leftarrow t'$, $t \leftarrow s' - qt'$
- return (d, s, t)

Example 1.11. Continuing with Example 1.10, we compute, in addition, the numbers s_i and t_i returned by the ith recursive call to Euclid, along with the corresponding quotient $q_i = \lfloor a_i / b_i \rfloor$:

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_i</td>
<td>100</td>
<td>35</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>b_i</td>
<td>35</td>
<td>30</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>s_i</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>t_i</td>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>q_i</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
The rule being applied here is \(s_i := t_{i+1} \) and \(t_i := s_{i+1} - q_i t_{i+1} \). So we have \(s = s_0 = -1 \) and \(t = t_0 = 3 \). One can verify that \(as + bt = 100 \cdot (-1) + 35 \cdot (3) = 5 = d \). □

Exercise 1.36. Suppose we run Algorithm ExtEuclid on input \((117, 67)\). Show the steps of the computation by giving the data corresponding to that shown in in the table in Example 1.11.

Exercise 1.37. Show that for \(a \geq b \geq 0 \), the values \(s \) and \(t \) computed by \(\text{ExtEuclid}(a, b) \) are relatively prime. Hint: prove this by induction on \(b \).

Exercise 1.38. Show that if \(a \geq b > 0 \), then the values \(s \) and \(t \) computed by \(\text{ExtEuclid}(a, b) \) satisfy

\[
|s| \leq b \quad \text{and} \quad |t| \leq a.
\]

Hint: again, induction on \(b \)—be careful, you have to stop the induction before \(b \) gets to zero, so the last step to consider is when \(b \mid a \).

Exercise 1.39. Improve the result of the previous exercise, proving that if \(a > b > 0 \) (note that both inequalities are strict), then the values \(s \) and \(t \) computed by \(\text{ExtEuclid}(a, b) \) satisfy

\[
|s| \leq b/2 \quad \text{and} \quad |t| \leq a/2.
\]

Hint: again, induction on \(b \).
Chapter 2

Congruences

This chapter introduces the basic properties of congruences modulo \(n \), along with the related notion of residue classes modulo \(n \). Other items discussed include the Chinese remainder theorem and Fermat’s little theorem.

2.1 Equivalence relations

Before discussing congruences, we review the definition and basic properties of equivalence relations.

Let \(S \) be a set. A binary relation \(\sim \) on \(S \) is called an equivalence relation if it is

- reflexive: \(a \sim a \) for all \(a \in S \),
- symmetric: \(a \sim b \) implies \(b \sim a \) for all \(a, b \in S \), and
- transitive: \(a \sim b \) and \(b \sim c \) implies \(a \sim c \) for all \(a, b, c \in S \).

If \(\sim \) is an equivalence relation on \(S \), then for \(a \in S \) one defines its equivalence class as the set \(\{ x : x \sim a \} \).

Theorem 2.1. Let \(\sim \) be an equivalence relation on a set \(S \), and for \(a \in S \), let \([a]\) denote its equivalence class. Then for all \(a, b \in S \), we have:

1. \(a \in [a] \);
2. \(a \in [b] \) implies \([a] = [b]\).

Proof. (i) follows immediately from reflexivity. For (ii), suppose \(a \in [b] \), so that \(a \sim b \) by definition. We want to show that \([a] = [b]\). To this end, consider any \(x \in S \). We have

\[
\begin{align*}
x \in [a] & \implies x \sim a \quad \text{(by definition)} \\
& \implies x \sim b \quad \text{(by transitivity, and since } x \sim a \text{ and } a \sim b) \\
& \implies x \in [b].
\end{align*}
\]

Thus, \([a] \subseteq [b]\). By symmetry, we also have \(b \sim a \), and reversing the roles of \(a \) and \(b \) in the above argument, we see that \([b] \subseteq [a]\). □

This theorem implies that each equivalence class is non-empty, and that each element of \(S \) belongs to a unique equivalence class; in other words, the distinct equivalence classes form a partition of \(S \). This just means that every element of \(S \) belongs to exactly one equivalence class, and each equivalence class is non-empty. A member of an equivalence class is called a representative of the class.
Exercise 2.1. Consider the relations $=, \leq, \text{and } <$ on the set \mathbb{R}. Which of these are equivalence relations? Explain your answers.

Exercise 2.2. Let $S := (\mathbb{R} \times \mathbb{R}) \setminus \{(0, 0)\}$. For $(x, y), (x', y') \in S$, let us say $(x, y) \sim (x', y')$ if there exists a real number $\lambda > 0$ such that $(x, y) = (\lambda x', \lambda y')$. Show that \sim is an equivalence relation; moreover, show that each equivalence class contains a unique representative that lies on the unit circle (i.e., the set of points (x, y) such that $x^2 + y^2 = 1$).

2.2 Definitions and basic properties of congruences

Let n be a positive integer. For integers a and b, we say that a is congruent to b modulo n if $n \mid (a - b)$, and we write $a \equiv b \pmod{n}$. If $n \nmid (a - b)$, then we write $a \not\equiv b \pmod{n}$. Equivalently, $a \equiv b \pmod{n}$ if and only if $a = b + ny$ for some $y \in \mathbb{Z}$. The relation $a \equiv b \pmod{n}$ is called a congruence relation, or simply, a congruence. The number n appearing in such congruences is called the modulus of the congruence. This usage of the “mod” notation as part of a congruence is not to be confused with the “mod” operation introduced in §1.1.

If we view the modulus n as fixed, then the following theorem says that the binary relation “$\cdot \equiv \cdot \pmod{n}$” is an equivalence relation on the set \mathbb{Z}.

Theorem 2.2. Let n be a positive integer. For all $a, b, c \in \mathbb{Z}$, we have:

(i) $a \equiv a \pmod{n}$;

(ii) $a \equiv b \pmod{n}$ implies $b \equiv a \pmod{n}$;

(iii) $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ implies $a \equiv c \pmod{n}$.

Proof. For (i), observe that n divides $0 = a - a$. For (ii), observe that if n divides $a - b$, then it also divides $-(a - b) = b - a$. For (iii), observe that if n divides $a - b$ and $b - c$, then it also divides $(a - b) + (b - c) = a - c$. □

Another key property of congruences is that they are “compatible” with integer addition and multiplication, in the following sense:

Theorem 2.3. Let $a, a', b, b', n \in \mathbb{Z}$ with $n > 0$. If

$$a \equiv a' \pmod{n} \text{ and } b \equiv b' \pmod{n},$$

then

$$a + b \equiv a' + b' \pmod{n} \text{ and } a \cdot b \equiv a' \cdot b' \pmod{n}.$$

Proof. Suppose that $a \equiv a' \pmod{n}$ and $b \equiv b' \pmod{n}$. This means that there exist integers x and y such that $a = a' + nx$ and $b = b' + ny$. Therefore,

$$a + b = a' + b' + n(x + y),$$

which proves the first congruence of the theorem, and

$$ab = (a' + nx)(b' + ny) = a'b' + n(a'y + b'x + nxy),$$

which proves the second congruence. □
Theorems 2.2 and 2.3 allow one to work with congruence relations modulo n much as one would with ordinary equalities: one can add to, subtract from, or multiply both sides of a congruence modulo n by the same integer; also, if b is congruent to a modulo n, one may substitute b for a in any simple arithmetic expression (involving addition, subtraction, and multiplication) appearing in a congruence modulo n.

Now suppose a is an arbitrary, fixed integer, and consider the set of integers z that satisfy the congruence $z \equiv a \pmod{n}$. Since z satisfies this congruence if and only if $z = a + ny$ for some $y \in \mathbb{Z}$, we may apply Theorems 1.4 and 1.5 (with a as given, and $b := n$) to deduce that every interval of n consecutive integers contains exactly one such z. This simple fact is of such fundamental importance that it deserves to be stated as a theorem:

Theorem 2.4. Let $a, n \in \mathbb{Z}$ with $n > 0$. Then there exists a unique integer z such that $z \equiv a \pmod{n}$ and $0 \leq z < n$, namely, $z := a \mod{n}$. More generally, for every $x \in \mathbb{R}$, there exists a unique integer $z \in [x, x + n)$ such that $z \equiv a \pmod{n}$.

Example 2.1. Let us find the set of solutions z to the congruence

$$3z + 4 \equiv 6 \pmod{7}.$$ \hspace{1cm} (2.1)

Suppose that z is a solution to (2.1). Subtracting 4 from both sides of (2.1), we obtain

$$3z \equiv 2 \pmod{7}. \hspace{1cm} (2.2)$$

Next, we would like to divide both sides of this congruence by 3, to get z by itself on the left-hand side. We cannot do this directly, but since $5 \cdot 3 \equiv 1 \pmod{7}$, we can achieve the same effect by multiplying both sides of (2.2) by 5. If we do this, and then replace $5 \cdot 3$ by 1, and $5 \cdot 2$ by 3, we obtain

$$z \equiv 3 \pmod{7}.$$

Thus, if z is a solution to (2.1), we must have $z \equiv 3 \pmod{7}$; conversely, one can verify that if $z \equiv 3 \pmod{7}$, then (2.1) holds. We conclude that the integers z that are solutions to (2.1) are precisely those integers that are congruent to 3 modulo 7, which we can list as follows:

$$\ldots, -18, -11, -4, 3, 10, 17, 24, \ldots \quad \square$$

In the next section, we shall give a systematic treatment of the problem of solving linear congruences, such as the one appearing in the previous example.

Exercise 2.3. Let $a, b, n \in \mathbb{Z}$ with $n > 0$. Show that $a \equiv b \pmod{n}$ if and only if $(a \mod{n}) = (b \mod{n})$.

Exercise 2.4. Let $a, b, n \in \mathbb{Z}$ with $n > 0$ and $a \equiv b \pmod{n}$. Also, let $c_0, c_1, \ldots, c_k \in \mathbb{Z}$. Show that

$$c_0 + c_1 a + \cdots + c_k a^k \equiv c_0 + c_1 b + \cdots + c_k b^k \pmod{n}.$$

Exercise 2.5. Let $a, b, n, n' \in \mathbb{Z}$ with $n > 0$, $n' > 0$, and $n' \mid n$. Show that if $a \equiv b \pmod{n}$, then $a \equiv b \pmod{n'}$.

Exercise 2.6. Let $a, b, n, n' \in \mathbb{Z}$ with $n > 0$, $n' > 0$, and $\gcd(n, n') = 1$. Show that if $a \equiv b \pmod{n}$ and $a \equiv b \pmod{n'}$, then $a \equiv b \pmod{nn'}$.

Exercise 2.7. Let $a, b, n \in \mathbb{Z}$ with $n > 0$ and $a \equiv b \pmod{n}$. Show that $\gcd(a, n) = \gcd(b, n)$.

17
Exercise 2.8. Let a be a positive integer whose base-10 representation is $a = (a_{k-1} \cdots a_1 a_0)_{10}$. Let b be the sum of the decimal digits of a; that is, let $b := a_0 + a_1 + \cdots + a_{k-1}$. Show that $a \equiv b \pmod{9}$. From this, justify the usual “rules of thumb” for determining divisibility by 9 and 3: a is divisible by 9 (respectively, 3) if and only if the sum of the decimal digits of a is divisible by 9 (respectively, 3).

Exercise 2.9. Analogous to the previous exercise, formulate and justify a simple “rule of thumb” for testing divisibility by 11.

Exercise 2.10. Let e be a positive integer. For $a \in \{0, \ldots, 2^e - 1\}$, let \tilde{a} denote the integer obtained by inverting the bits in the e-bit, binary representation of a (note that $\tilde{a} \in \{0, \ldots, 2^e - 1\}$). Show that $\tilde{a} + 1 \equiv -a \pmod{2^e}$. This justifies the usual rule for computing negatives in 2’s complement arithmetic (which is really just arithmetic modulo 2^e).

Exercise 2.11. Show that the equation $7y^3 + 2 = z^3$ has no solutions $y, z \in \mathbb{Z}$.

Exercise 2.12. Show that there are 14 distinct, possible, yearly (Gregorian) calendars, and show that all 14 calendars actually occur.

2.3 Solving linear congruences

In this section, we consider the general problem of solving linear congruences. More precisely, for a given positive integer n, and arbitrary integers a and b, we wish to determine the set of integers z that satisfy the congruence

$$az \equiv b \pmod{n}. \quad (2.3)$$

Observe that if (2.3) has a solution z, and if $z \equiv z' \pmod{n}$, then z' is also a solution to (2.3). However, (2.3) may or may not have a solution, and if it does, such solutions may or may not be uniquely determined modulo n. The following theorem precisely characterizes the set of solutions of (2.3); basically, it says that (2.3) has a solution if and only if $d := \gcd(a, n)$ divides b, in which case the solution is uniquely determined modulo n/d.

Theorem 2.5. Let $a, n \in \mathbb{Z}$ with $n > 0$, and let $d := \gcd(a, n)$.

(i) For every $b \in \mathbb{Z}$, the congruence $az \equiv b \pmod{n}$ has a solution $z \in \mathbb{Z}$ if and only if $d \mid b$.

(ii) For every $z \in \mathbb{Z}$, we have $az \equiv 0 \pmod{n}$ if and only if $z \equiv 0 \pmod{n/d}$.

(iii) For all $z, z' \in \mathbb{Z}$, we have $az \equiv az' \pmod{n}$ if and only if $z \equiv z' \pmod{n/d}$.

Proof. For (i), let $b \in \mathbb{Z}$ be given. Then we have

$$az \equiv b \pmod{n} \quad \text{for some} \ z \in \mathbb{Z}$$

$$\iff az = b + ny \quad \text{for some} \ z, y \in \mathbb{Z} \quad \text{(by definition of congruence)}$$

$$\iff az - ny = b \quad \text{for some} \ z, y \in \mathbb{Z}$$

$$\iff d \mid b \quad \text{(by Theorem 1.8)}.$$

For (ii), we have

$$n \mid az \iff n/d \mid (a/d)z \iff n/d \mid z.$$

All of these implications follow rather trivially from the definition of divisibility, except that for the implication $n/d \mid (a/d)z \implies n/d \mid z$, we use Theorem 1.9 and the fact that $\gcd(a/d, n/d) = 1$.
For (iii), we have
\[az \equiv az' \pmod{n} \iff a(z - z') \equiv 0 \pmod{n} \]
\[\iff z - z' \equiv 0 \pmod{n/d} \quad \text{(by part (ii))} \]
\[\iff z \equiv z' \pmod{n/d}. \quad \square \]

We can restate Theorem 2.5 in more concrete terms as follows. Let \(a, n \in \mathbb{Z} \) with \(n > 0 \), and let \(d := \gcd(a, n) \). Let \(I_n := \{0, \ldots, n-1\} \) and consider the “multiplication by \(a \)” map
\[\tau_a : \quad I_n \to I_n \]
\[z \mapsto az \pmod{n}. \]

The image of \(\tau_a \) consists of the \(n/d \) integers
\[i \cdot d \quad (i = 0, \ldots, n/d - 1). \]

Moreover, every element \(b \) in the image of \(\tau_a \) has precisely \(d \) pre-images
\[z_0 + j \cdot (n/d) \quad (j = 0, \ldots, d - 1), \]
where \(z_0 \in \{0, \ldots, n/d - 1\} \). In particular, \(\tau_a \) is a bijection if and only if \(a \) and \(n \) are relatively prime.

Example 2.2. The following table illustrates what Theorem 2.5 says for \(n = 15 \) and \(a = 1, 2, 3, 4, 5, 6 \).

<table>
<thead>
<tr>
<th>(z)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2z \mod 15)</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>(3z \mod 15)</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>(4z \mod 15)</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>3</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>(5z \mod 15)</td>
<td>0</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>(6z \mod 15)</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>3</td>
<td>9</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>3</td>
<td>9</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

In the second row, we are looking at the values \(2z \mod 15 \), and we see that this row is just a permutation of the first row. So for every \(b \), there exists a unique \(z \) such that \(2z \equiv b \pmod{15} \). This is implied by the fact that \(\gcd(2, 15) = 1 \).

In the third row, the only numbers hit are the multiples of 3, which follows from the fact that \(\gcd(3, 15) = 3 \). Also note that the pattern in this row repeats every five columns; that is, \(3z \equiv 3z' \pmod{15} \) if and only if \(z \equiv z' \pmod{5} \).

In the fourth row, we again see a permutation of the first row, which follows from the fact that \(\gcd(4, 15) = 1 \).

In the fifth row, the only numbers hit are the multiples of 5, which follows from the fact that \(\gcd(5, 15) = 5 \). Also note that the pattern in this row repeats every three columns; that is, \(5z \equiv 5z' \pmod{15} \) if and only if \(z \equiv z' \pmod{3} \).

In the sixth row, since \(\gcd(6, 15) = 3 \), we see a permutation of the third row. The pattern repeats after five columns, although the pattern is a permutation of the pattern in the third row. \(\square \)

We develop some further consequences of Theorem 2.5.
A cancellation law. Let \(a, n \in \mathbb{Z} \) with \(n > 0 \). Part (iii) of Theorem 2.5 gives us a cancellation law for congruences:

if \(\gcd(a, n) = 1 \) and \(az \equiv az' \) (mod \(n \)), then \(z \equiv z' \) (mod \(n \)).

More generally, if \(d := \gcd(a, n) \), then we can cancel \(a \) from both sides of a congruence modulo \(n \), as long as we replace the modulus by \(n/d \).

Example 2.3. Observe that

\[
5 \cdot 2 \equiv 5 \cdot (-4) \quad \text{(mod 6)}.
\]

Part (iii) of Theorem 2.5 tells us that since \(\gcd(5, 6) = 1 \), we may cancel the common factor of 5 from both sides of (2.4), obtaining \(2 \equiv -4 \) (mod 6), which one can also verify directly.

Next observe that

\[
15 \cdot 5 \equiv 15 \cdot 3 \quad \text{(mod 6)}.
\]

We cannot simply cancel the common factor of 15 from both sides of (2.5); indeed, \(5 \not\equiv 3 \) (mod 6). However, \(\gcd(15, 6) = 3 \), and as part (iii) of Theorem 2.5 guarantees, we do indeed have \(5 \equiv 3 \) (mod 2). □

Modular inverses. Again, let \(a, n \in \mathbb{Z} \) with \(n > 0 \). We say that \(z \in \mathbb{Z} \) is a multiplicative inverse of \(a \) modulo \(n \) if \(az \equiv 1 \) (mod \(n \)). Part (i) of Theorem 2.5 says that \(a \) has a multiplicative inverse modulo \(n \) if and only if \(\gcd(a, n) = 1 \). Moreover, part (iii) of Theorem 2.5 says that the multiplicative inverse of \(a \), if it exists, is uniquely determined modulo \(n \); that is, if \(z \) and \(z' \) are multiplicative inverses of \(a \) modulo \(n \), then \(z \equiv z' \) (mod \(n \)). Note that if \(z \) is a multiplicative inverse of \(a \) modulo \(n \), then \(z \) is a multiplicative inverse of \(a \) modulo \(n \). Also note that if \(a \equiv a' \) (mod \(n \)), then \(z \) is a multiplicative inverse of \(a \) modulo \(n \) if and only if \(z \) is a multiplicative inverse of \(a' \) modulo \(n \).

Now suppose that \(a, b, n \in \mathbb{Z} \) with \(n > 0 \), \(a \neq 0 \), and \(\gcd(a, n) = 1 \). Theorem 2.5 says that there exists a unique integer \(z \) satisfying

\[
az \equiv b \pmod{n} \quad \text{and} \quad 0 \leq z < n.
\]

Setting \(s := b/a \in \mathbb{Q} \), we may generalize the “mod” operation, defining \(s \mod n \) to be this value \(z \). As the reader may easily verify, this definition of \(s \mod n \) does not depend on the particular choice of fraction used to represent the rational number \(s \). With this notation, we can simply write \(a^{-1} \mod n \) to denote the unique multiplicative inverse of \(a \) modulo \(n \) that lies in the interval \(0, \ldots, n-1 \).

Example 2.4. Looking back at the table in Example 2.2, we see that

\[
2^{-1} \mod 15 = 8 \quad \text{and} \quad 4^{-1} \mod 15 = 4,
\]

and that neither 3, 5, nor 6 have modular inverses modulo 15. □

Example 2.5. Let \(a, b, n \in \mathbb{Z} \) with \(n > 0 \). We can describe the set of solutions \(z \in \mathbb{Z} \) to the congruence \(az \equiv b \) (mod \(n \)) very succinctly in terms of modular inverses.

If \(\gcd(a, n) = 1 \), then setting \(t := a^{-1} \mod n \), and \(z_0 := tb \mod n \), we see that \(z_0 \) is the unique solution to the congruence \(az \equiv b \) (mod \(n \)) that lies in the interval \(\{0, \ldots, n-1\} \).

More generally, if \(d := \gcd(a, n) \), then the congruence \(az \equiv b \) (mod \(n \)) has a solution if and only if \(d \mid b \). So suppose that \(d \mid b \). In this case, if we set \(a' := a/d \), \(b' := b/d \), and \(n' := n/d \), then for each \(z \in \mathbb{Z} \), we have \(az \equiv b \) (mod \(n \)) if and only if \(a'z \equiv b' \) (mod \(n' \)). Moreover, \(\gcd(a', n') = 1 \), and therefore, if we set \(t := (a')^{-1} \mod n' \) and \(z_0 := tb' \mod n' \), then the solutions to the congruence \(az \equiv b \) (mod \(n \)) that lie in the interval \(\{0, \ldots, n-1\} \) are the \(d \) integers \(z_0, z_0+n', \ldots, z_0+(d-1)n' \). □
Computing modular inverses. We can use the extended Euclidean algorithm, discussed in \S 1.4, to compute modular inverses, when they exist. Suppose we are given \(a \) and \(n \), and want to compute \(a^{-1} \mod n \). Let use assume that \(0 \leq a < n \)—we can always replace \(a \) by \(a \mod n \), if this is not the case. Now compute

\[
(d, s, t) \leftarrow \text{ExtEuclid}(n, a),
\]

so that \(d = \gcd(n, a) \) and \(s \) and \(t \) satisfy \(ns + at = d \). If \(d \neq 1 \), the \(a^{-1} \mod n \) does not exist; otherwise, \(a^{-1} \mod n = t \mod n \).

Exercise 2.13. Use Theorem 2.5 to determine the number of integer solutions \(z \in \{0, \ldots, 1023\} \) there are to each of the following congruences:

(a) \(5z \equiv 7 \mod 1024 \);
(b) \(12z \equiv 14 \mod 1024 \);
(b) \(36z \equiv 24 \mod 1024 \).

Exercise 2.14. Let \(a_1, \ldots, a_k, b, n \) be integers with \(n > 0 \). Show that the congruence

\[
a_1z_1 + \cdots + a_kz_k \equiv b \mod n
\]

has a solution \(z_1, \ldots, z_k \in \mathbb{Z} \) if and only if \(d \mid b \), where \(d := \gcd(a_1, \ldots, a_k, n) \).

Exercise 2.15. Let \(p \) be a prime, and let \(a, b, c, e \) be integers, such that \(e > 0, a \not\equiv 0 \mod p^{e+1} \), and \(0 \leq c < p^e \). Define \(N \) to be the number of integers \(z \in \{0, \ldots, p^{2e} - 1\} \) such that

\[
\left\lfloor \frac{(az + b) \mod p^{2e}}{p^e} \right\rfloor = c.
\]

Show that \(N = p^e \).

2.4 The Chinese remainder theorem

Next, we consider systems of linear congruences with respect to moduli that are relatively prime in pairs. The result we state here is known as the Chinese remainder theorem, and is extremely useful in a number of contexts.

Theorem 2.6 (Chinese remainder theorem). Let \(\{n_i\}_{i=1}^k \) be a pairwise relatively prime family of positive integers, and let \(a_1, \ldots, a_k \) be arbitrary integers. Then there exists a solution \(a \in \mathbb{Z} \) to the system of congruences

\[
a \equiv a_i \mod n_i \quad (i = 1, \ldots, k).
\]

Moreover, any \(a' \in \mathbb{Z} \) is a solution to this system of congruences if and only if \(a \equiv a' \mod n \), where \(n := \prod_{i=1}^k n_i \).

Proof. To prove the existence of a solution \(a \) to the system of congruences, we first show how to construct integers \(e_1, \ldots, e_k \) such that for \(i, j = 1, \ldots, k \), we have

\[
e_j \equiv \begin{cases}
1 \mod n_i & \text{if } j = i, \\
0 \mod n_i & \text{if } j \neq i.
\end{cases}
\]

(2.6)
If we do this, then setting

\[a := \sum_{i=1}^{k} a_i e_i, \]

one sees that for \(j = 1, \ldots, k \), we have

\[a \equiv \sum_{i=1}^{k} a_i e_i \equiv a_j \pmod{n_j}, \]

since all the terms in this sum are zero modulo \(n_j \), except for the term \(i = j \), which is congruent to \(a_j \) modulo \(n_j \).

To construct \(e_1, \ldots, e_k \) satisfying (2.6), let \(n := \prod_{i=1}^{k} n_i \) as in the statement of the theorem, and for \(i = 1, \ldots, k \), let \(n_i^* := n/n_i \); that is, \(n_i^* \) is the product of all the moduli \(n_j \) with \(j \neq i \). From the fact that \(\{n_i\}_{i=1}^{k} \) is pairwise relatively prime, it follows that for \(i = 1, \ldots, k \), we have \(\gcd(n_i, n_i^*) = 1 \), and so we may define \(t_i := (n_i^*)^{-1} \pmod{n_i} \) and \(e_i := n_i^* t_i \). One sees that \(e_i \equiv 1 \pmod{n_i} \), while for \(j \neq i \), we have \(n_i \mid n_j^* \), and so \(e_j \equiv 0 \pmod{n_i} \). Thus, (2.6) is satisfied.

That proves the existence of a solution \(a \) to the given system of congruences. If \(a \equiv a' \pmod{n} \), then since \(n_i \mid n \) for \(i = 1, \ldots, k \), we see that \(a' \equiv a \equiv a_i \pmod{n_i} \) for \(i = 1, \ldots, k \), and so \(a' \) also solves the system of congruences.

Finally, if \(a' \) is a solution to the given system of congruences, then \(a \equiv a_i \equiv a' \pmod{n_i} \) for \(i = 1, \ldots, k \). Thus, \(n_i \mid (a - a') \) for \(i = 1, \ldots, k \). Since \(\{n_i\}_{i=1}^{k} \) is pairwise relatively prime, this implies \(n \mid (a - a') \), or equivalently, \(a \equiv a' \pmod{n} \). \(\square \)

We can restate Theorem 2.6 in more concrete terms, as follows. For each positive integer \(m \), let \(I_m \) denote \(\{0, \ldots, m-1\} \). Suppose \(\{n_i\}_{i=1}^{k} \) is a pairwise relatively prime family of positive integers, and set \(n := n_1 \cdots n_k \). Then the map

\[\tau : I_n \to I_{n_1} \times \cdots \times I_{n_k} \]
\[a \mapsto (a \pmod{n_1}, \ldots, a \pmod{n_k}) \]

is a bijection.

Example 2.6. The following table illustrates what Theorem 2.6 says for \(n_1 = 3 \) and \(n_2 = 5 \).

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td></td>
</tr>
<tr>
<td>(a \mod{3})</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>(a \mod{5})</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

We see that as \(a \) ranges from 0 to 14, the pairs \((a \mod{3}, a \mod{5})\) range over all pairs \((a_1, a_2)\) with \(a_1 \in \{0,1,2\} \) and \(a_2 \in \{0,\ldots,4\} \), with every pair being hit exactly once. \(\square \)

Exercise 2.16. Compute the values \(e_1, e_2, e_3 \) in the proof of Theorem 2.6 in the case where \(k = 3 \), \(n_1 = 3 \), \(n_2 = 5 \), and \(n_3 = 7 \). Also, find an integer \(a \) such that \(a \equiv 1 \pmod{3} \), \(a \equiv -1 \pmod{5} \), and \(a \equiv 5 \pmod{7} \).

Exercise 2.17. If you want to show that you are a real nerd, here is an age-guessing game you might play at a party. You ask a fellow party-goer to divide his age by each of the numbers 3, 4, and 5, and tell you the remainders. Show how to use this information to determine his age.
Exercise 2.18. Let \(\{n_i\}_{i=1}^k \) be a pairwise relatively prime family of positive integers. Let \(a_1, \ldots, a_k \) and \(b_1, \ldots, b_k \) be integers, and set \(d_i := \gcd(a_i, n_i) \) for \(i = 1, \ldots, k \). Show that there exists an integer \(z \) such that \(a_i z \equiv b_i \pmod{n_i} \) for \(i = 1, \ldots, k \) if and only if \(d_i \mid b_i \) for \(i = 1, \ldots, k \).

Exercise 2.19. For each prime \(p \), let \(\nu_p(\cdot) \) be defined as in §1.3. Let \(p_1, \ldots, p_r \) be distinct primes, \(a_1, \ldots, a_r \) be arbitrary integers, and \(e_1, \ldots, e_r \) be arbitrary non-negative integers. Show that there exists an integer \(a \) such that \(\nu_{p_i}(a - a_i) = e_i \) for \(i = 1, \ldots, r \).

Exercise 2.20. Suppose \(n_1 \) and \(n_2 \) are positive integers, and let \(d := \gcd(n_1, n_2) \). Let \(a_1 \) and \(a_2 \) be arbitrary integers. Show that there exists an integer \(a \) such that \(a \equiv a_1 \pmod{n_1} \) and \(a \equiv a_2 \pmod{n_2} \) if and only if \(a_1 \equiv a_2 \pmod{d} \).

2.5 Residue classes

As we already observed in Theorem 2.2, for any fixed positive integer \(n \), the binary relation \(\cdot \equiv \cdot \pmod{n} \) is an equivalence relation on the set \(\mathbb{Z} \). As such, this relation partitions the set \(\mathbb{Z} \) into equivalence classes. We denote the equivalence class containing the integer \(a \) by \([a]_n\), and when \(n \) is clear from context, we simply write \([a]_n\). By definition, we have

\[z \in [a] \iff z \equiv a \pmod{n} \iff z = a + ny \text{ for some } y \in \mathbb{Z}, \]

and hence

\[[a] = a + n\mathbb{Z} := \{a + ny : y \in \mathbb{Z}\}. \]

Historically, these equivalence classes are called residue classes modulo \(n \), and we shall adopt this terminology here as well. Note that a given residue class modulo \(n \) has many different “names”; for example, the residue class \([n-1]\) is the same as the residue class \([-1]\). Any member of a residue class is called a representative of that class.

We define \(\mathbb{Z}_n \) to be the set of residue classes modulo \(n \). The following is simply a restatement of Theorem 2.4:

Theorem 2.7. Let \(n \) be a positive integer. Then \(\mathbb{Z}_n \) consists of the \(n \) distinct residue classes \([0], [1], \ldots, [n-1]\). Moreover, for every \(x \in \mathbb{R} \), each residue class modulo \(n \) contains a unique representative in the interval \([x, x+n)\).

When working with residue classes modulo \(n \), one often has in mind a particular set of representatives. Typically, one works with the set of representatives \(\{0, 1, \ldots, n-1\} \). However, sometimes it is convenient to work with another set of representatives, such as the representatives in the interval \([-n/2, n/2)\). In this case, if \(n \) is odd, we can list the elements of \(\mathbb{Z}_n \) as

\[-(n-1)/2, \ldots, [-1], [0], [1], \ldots, [(n-1)/2], \]

and when \(n \) is even, we can list the elements of \(\mathbb{Z}_n \) as

\[-n/2, \ldots, [-1], [0], [1], \ldots, [n/2-1]. \]

We can “equip” \(\mathbb{Z}_n \) with binary operations defining addition and multiplication in a natural way as follows: for \(a, b \in \mathbb{Z} \), we define

\[[a] + [b] := [a + b], \]

\[[a] \cdot [b] := [a \cdot b]. \]
Of course, one has to check that this definition is unambiguous, in the sense that the sum or product of two residue classes should not depend on which particular representatives of the classes are chosen in the above definitions. More precisely, one must check that if \([a] = [a']\) and \([b] = [b']\), then \([a + b] = [a' + b']\) and \([a \cdot b] = [a' \cdot b']\). However, this property follows immediately from Theorem 2.3.

Observe that for all \(a, b, c \in \mathbb{Z}\), we have
\[[a] + [b] = [c] \iff a + b \equiv c \pmod{n}, \]
and
\[[a] \cdot [b] = [c] \iff a \cdot b \equiv c \pmod{n}, \]

Example 2.7. Consider the residue classes modulo 6. These are as follows:

- \([0] = \{\ldots, -12, -6, 0, 6, 12, \ldots\}\)
- \([1] = \{\ldots, -11, -5, 1, 7, 13, \ldots\}\)
- \([2] = \{\ldots, -10, -4, 2, 8, 14, \ldots\}\)
- \([3] = \{\ldots, -9, -3, 3, 9, 15, \ldots\}\)
- \([4] = \{\ldots, -8, -2, 4, 10, 16, \ldots\}\)
- \([5] = \{\ldots, -7, -1, 5, 11, 17, \ldots\}\)

Let us write down the addition and multiplication tables for \(\mathbb{Z}_6\). The addition table looks like this:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

The multiplication table looks like this:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Instead of using representatives in the interval \([0, 6)\), we could just as well use representatives from another interval, such as \([-3, 3)\). Then, instead of naming the residue classes \([0], [1], [2], [3], [4], [5]\), we would name them \([-3], [-2], [-1], [0], [1], [2]\). Observe that \([-3] = [3]\), \([-2] = [4]\), and \([-1] = [5]\). □

These addition and multiplication operations on \(\mathbb{Z}_n\) yield a very natural algebraic structure. For example, addition and multiplication are commutative and associative; that is, for all \(\alpha, \beta, \gamma \in \mathbb{Z}_n\), we have
\[
\alpha + \beta = \beta + \alpha, \quad (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma),
\]
\[
\alpha \beta = \beta \alpha, \quad (\alpha \beta) \gamma = \alpha (\beta \gamma).
\]
Note that we have adopted here the usual convention of writing \(\alpha \beta \) in place of \(\alpha \cdot \beta \). Furthermore, multiplication distributes over addition; that is, for all \(\alpha, \beta, \gamma \in \mathbb{Z} \), we have
\[
\alpha (\beta + \gamma) = \alpha \beta + \alpha \gamma.
\]
All of these properties follow from the definitions, and the corresponding properties for \(\mathbb{Z} \); for example, the fact that addition in \(\mathbb{Z} \) is commutative may be seen as follows: if \(\alpha = [a] \) and \(\beta = [b] \), then
\[
\alpha + \beta = [a] + [b] = [a + b] = [b + a] = [b] + [a] = \beta + \alpha.
\]
Because addition and multiplication in \(\mathbb{Z} \) are associative, for \(\alpha_1, \ldots, \alpha_k \in \mathbb{Z} \), we may write the sum \(\alpha_1 + \cdots + \alpha_k \) and the product \(\alpha_1 \cdots \alpha_k \) without any parentheses, and there is no ambiguity; moreover, since both addition and multiplication are commutative, we may rearrange the terms in such sums and products without changing their values.

The residue class \([0]\) acts as an additive identity; that is, for all \(\alpha \in \mathbb{Z}_n \), we have \(\alpha + [0] = \alpha \); indeed, if \(\alpha = [a] \), then \(a + 0 \equiv a \) (mod \(n \)). Moreover, \([0]\) is the only element of \(\mathbb{Z}_n \) that acts as an additive identity; indeed, if \(a + z \equiv a \) (mod \(n \)) holds for all integers \(a \), then it holds in particular for \(a = 0 \), which implies \(z \equiv 0 \) (mod \(n \)). The residue class \([0]\) also has the property that \(\alpha \cdot [0] = [0] \) for all \(\alpha \in \mathbb{Z}_n \).

Every \(\alpha \in \mathbb{Z}_n \) has an additive inverse, that is, an element \(\beta \in \mathbb{Z}_n \) such that \(\alpha + \beta = [0] \); indeed, if \(\alpha = [a] \), then clearly \(\beta := [-a] \) does the job, since \(a + (-a) \equiv 0 \) (mod \(n \)). Moreover, \([0] \) has a unique additive inverse; indeed, if \(a + z \equiv 0 \) (mod \(n \)), then subtracting \(a \) from both sides of this congruence yields \(z \equiv -a \) (mod \(n \)). We naturally denote the additive inverse of \(\alpha \) by \(-\alpha \). Observe that the additive inverse of \(-\alpha \) is \(\alpha \); that is \(-(\alpha) = \alpha \). Also, we have the identities
\[
-(\alpha + \beta) = (-\alpha) + (-\beta), \quad (\alpha \beta) = \alpha (-\beta), \quad (\alpha)(-\beta) = \alpha \beta.
\]
For \(\alpha, \beta \in \mathbb{Z}_n \), we naturally write \(\alpha - \beta \) for \(\alpha + (-\beta) \).

The residue class \([1]\) acts as a multiplicative identity; that is, for all \(\alpha \in \mathbb{Z}_n \), we have \(\alpha \cdot [1] = \alpha \); indeed, if \(\alpha = [a] \), then \(a \cdot 1 \equiv a \) (mod \(n \)). Moreover, \([1]\) is the only element of \(\mathbb{Z}_n \) that acts as a multiplicative identity; indeed, if \(a \cdot z \equiv a \) (mod \(n \)) holds for all integers \(a \), then in particular, it holds for \(a = 1 \), which implies \(z \equiv 1 \) (mod \(n \)).

For \(\alpha \in \mathbb{Z}_n \), we call \(\beta \in \mathbb{Z}_n \) a multiplicative inverse of \(\alpha \) if \(\alpha \beta = [1] \). Not all \(\alpha \in \mathbb{Z}_n \) have multiplicative inverses. If \(\alpha = [a] \) and \(\beta = [b] \), then \(\beta \) is a multiplicative inverse of \(\alpha \) if and only if \(ab \equiv 1 \) (mod \(n \)). Theorem 2.5 implies that \(\alpha \) has a multiplicative inverse if and only if \(\gcd(a, n) = 1 \), and that if it exists, it is unique. When it exists, we denote the multiplicative inverse of \(\alpha \) by \(\alpha^{-1} \). We saw at the end of §2.3 how to compute modular inverses using the extended Euclidean algorithm.

We define \(\mathbb{Z}_n^* \) to be the set of elements of \(\mathbb{Z}_n \) that have a multiplicative inverse. By the above discussion, we have
\[
\mathbb{Z}_n^* = \{ [a] : a = 0, \ldots, n - 1, \ \gcd(a, n) = 1 \}.
\]
If \(n \) is prime, then \(\gcd(a, n) = 1 \) for \(a = 1, \ldots, n - 1 \), and we see that \(\mathbb{Z}_n^* = \mathbb{Z}_n \setminus \{ [0] \} \). If \(n \) is composite, then \(\mathbb{Z}_n^* \subseteq \mathbb{Z}_n \setminus \{ [0] \} \); for example, if \(d \mid n \) with \(1 < d < n \), we see that \([d] \) is not zero, nor does it belong to \(\mathbb{Z}_n^* \). Observe that if \(\alpha, \beta \in \mathbb{Z}_n^* \), then so are \(\alpha^{-1} \) and \(\alpha \beta \); indeed,
\[
(\alpha^{-1})^{-1} = \alpha \quad \text{and} \quad (\alpha \beta)^{-1} = \alpha^{-1} \beta^{-1}.
\]
For \(\alpha \in \mathbb{Z}_n \) and \(\beta \in \mathbb{Z}_n^* \), we naturally write \(\alpha / \beta \) for \(\alpha \beta^{-1} \).

Suppose \(\alpha, \beta, \gamma \) are elements of \(\mathbb{Z}_n \) that satisfy the equation
\[
\alpha \beta = \alpha \gamma.
\]
If $\alpha \in \mathbb{Z}^*_n$, we may multiply both sides of this equation by α^{-1} to infer that

$$\beta = \gamma.$$

This is the **cancellation law** for \mathbb{Z}_n. We stress the requirement that $\alpha \in \mathbb{Z}^*_n$, and not just $\alpha \neq [0]$. Indeed, consider any $\alpha \in \mathbb{Z}_n \setminus \mathbb{Z}^*_n$. Then we have $\alpha = [a]$ with $d := \gcd(a, n) > 1$. Setting $\beta := [n/d]$ and $\gamma := [0]$, we see that

$$\alpha \beta = \alpha \gamma \quad \text{and} \quad \beta \neq \gamma.$$

Example 2.8. We list the elements of \mathbb{Z}_{15}, and for each $\alpha \in \mathbb{Z}_{15}^*$, we also give α^{-1}:

<table>
<thead>
<tr>
<th>α</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>7</th>
<th>8</th>
<th>11</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>α^{-1}</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>13</td>
<td>2</td>
<td>11</td>
<td>7</td>
<td>14</td>
</tr>
</tbody>
</table>

For $\alpha_1, \ldots, \alpha_k \in \mathbb{Z}_n$, we may naturally write their sum as $\sum_{i=1}^{k} \alpha_i$. By convention, this sum is $[0]$ when $k = 0$. It is easy to see that $-\sum_{i=1}^{k} \alpha_i = \sum_{i=1}^{k} (-\alpha_i)$; that is, the additive inverse of the sum is the sum of the additive inverses. In the special case where all the α_i's have the same value α, we define $k \cdot \alpha := \sum_{i=1}^{k} \alpha$; thus, $0 \cdot \alpha = [0], 1 \cdot \alpha = \alpha, 2 \cdot \alpha = \alpha + \alpha, 3 \cdot \alpha = \alpha + \alpha + \alpha$, and so on. The additive inverse of $k \cdot \alpha$ is $k \cdot (-\alpha)$, which we may also write as $(-k) \cdot \alpha$; thus, $(-1) \cdot \alpha = -\alpha$, $(-2) \cdot \alpha = (-\alpha) + (-\alpha) = -(\alpha + \alpha)$, and so on. Therefore, the notation $k \cdot \alpha$, or more simply, $k\alpha$, is defined for all integers k. Note that for all integers k and a, we have $k[a] = [ka] = [k][a]$.

Analogously, for $\alpha_1, \ldots, \alpha_k \in \mathbb{Z}_n$, we may write their product as $\prod_{i=1}^{k} \alpha_i$. By convention, this product is $[1]$ when $k = 0$. It is easy to see that if all of the α_i's belong to \mathbb{Z}_n^*, then so does their product, and in particular, $(\prod_{i=1}^{k} \alpha_i)^{-1} = \prod_{i=1}^{k} \alpha_i^{-1}$; that is, the multiplicative inverse of the product is the product of the multiplicative inverses. In the special case where all the α_i's have the same value α, we define $\alpha^k := \prod_{i=1}^{k} \alpha$; thus, $\alpha^0 = [1], \alpha^1 = \alpha, \alpha^2 = \alpha \alpha, \alpha^3 = \alpha \alpha \alpha$, and so on. If $\alpha \in \mathbb{Z}_n^*$, then the multiplicative inverse of α^k is $(\alpha^{-1})^k$, which we may also write as α^{-k}; for example, $\alpha^{-2} = \alpha^{-1} \alpha^{-1} = (\alpha \alpha)^{-1}$. Therefore, when $\alpha \in \mathbb{Z}_n^*$, the notation α^k is defined for all integers k.

One last notational convention. As already mentioned, when the modulus n is clear from context, we usually write $[a]$ instead of $[a]_n$. Although we want to maintain a clear distinction between integers and their residue classes, occasionally even the notation $[a]$ is not only redundant, but distracting; in such situations, we may simply write a instead of $[a]$. For example, for every $\alpha \in \mathbb{Z}_n$, we have the identity $(\alpha + [1]_n)(\alpha - [1]_n) = \alpha^2 - [1]_n$, which we may write more simply as $(\alpha + 1)(\alpha - 1) = \alpha^2 - 1$, or even more simply, and hopefully more clearly, as $(\alpha + 1)(\alpha - 1) = \alpha^2 - 1$. Here, the only reasonable interpretation of the symbol “1” is $[1]$, and so there can be no confusion.

In summary, algebraic expressions involving residue classes may be manipulated in much the same way as expressions involving ordinary numbers. Extra complications arise only because when n is composite, some non-zero elements of \mathbb{Z}_n do not have multiplicative inverses, and the usual cancellation law does not apply for such elements.

In general, one has a choice between working with congruences modulo n, or with the algebraic structure \mathbb{Z}_n; ultimately, the choice is one of taste and convenience, and it depends on what one prefers to treat as “first class objects”: integers and congruence relations, or elements of \mathbb{Z}_n.

An alternative, and somewhat more concrete, approach to constructing \mathbb{Z}_n is to directly define it as the set of n “symbols” $[0], [1], \ldots, [n - 1]$, with addition and multiplication defined as

$$[a] + [b] := [(a + b) \mod n], \quad [a] \cdot [b] := [(a \cdot b) \mod n],$$

for $a, b \in \{0, \ldots, n - 1\}$. Such a definition is equivalent to the one we have given here. One should keep this alternative characterization of \mathbb{Z}_n in mind; however, we prefer the characterization in
terms of residue classes, as it is mathematically more elegant, and is usually more convenient to
work with.

Exercise 2.21. Let \(p \) be an odd prime. Show that \(\sum_{\beta \in \mathbb{Z}_p} \beta^{-1} = \sum_{\beta \in \mathbb{Z}_p} \beta = 0. \)

Exercise 2.22. Let \(p \) be an odd prime. Show that the numerator of \(\sum_{i=1}^{p-1} 1/i \) is divisible by \(p \).
Hint: use the previous exercise.

2.6 Fermat’s little theorem

Let \(n \) be a positive integer, and let \(\alpha \in \mathbb{Z}_n^* \).

Consider the sequence of powers of \(\alpha \):

\[
1 = \alpha^0, \alpha^1, \alpha^2, \ldots.
\]

Since each such power is an element of \(\mathbb{Z}_n^* \), and since \(\mathbb{Z}_n^* \) is a finite set, this sequence of powers
must start to repeat at some point; that is, there must be a positive integer \(k \) such that \(\alpha^k = \alpha^i \)
for some \(i = 0, \ldots, k - 1 \). Let us assume that \(k \) is chosen to be the smallest such positive integer.
This value \(k \) is called the multiplicative order of \(\alpha \).

We claim that \(\alpha^k = 1 \). To see this, suppose by way of contradiction that \(\alpha^k = \alpha^i \), for some
\(i = 1, \ldots, k - 1 \); we could then cancel \(\alpha \) from both sides of the equation \(\alpha^k = \alpha^i \), obtaining
\(\alpha^{k-1} = \alpha^{i-1} \), which would contradict the minimality of \(k \).

Thus, we can characterize the multiplicative order of \(\alpha \) as the smallest positive integer \(k \) such that

\[
\alpha^k = 1.
\]

If \(\alpha = [a] \) with \(a \in \mathbb{Z} \) (and \(\gcd(a, n) = 1 \), since \(\alpha \in \mathbb{Z}_n^* \)), then \(k \) is also called the multiplicative
order of \(a \) modulo \(n \), and can be characterized as the smallest positive integer \(k \) such that

\[
a^k \equiv 1 \pmod{n}.
\]

From the above discussion, we see that the first \(k \) powers of \(\alpha \), that is, \(\alpha^0, \alpha^1, \ldots, \alpha^{k-1} \), are
distinct. Moreover, other powers of \(\alpha \) simply repeat this pattern. The following is an immediate
consequence of this observation.

Theorem 2.8. Let \(n \) be a positive integer, and let \(\alpha \) be an element of \(\mathbb{Z}_n^* \) of multiplicative order \(k \). Then for every \(i \in \mathbb{Z} \), we have \(\alpha^i = 1 \) if and only if \(k \) divides \(i \). More generally, for all \(i, j \in \mathbb{Z} \), we have \(\alpha^i = \alpha^j \) if and only if \(i \equiv j \pmod{k} \).

Example 2.9. Let \(n = 7 \). For each value \(a = 1, \ldots, 6 \), we can compute successive powers of \(a \)
modulo \(n \) to find its multiplicative order modulo \(n \).

<table>
<thead>
<tr>
<th>(i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1^i \mod{7})</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(2^i \mod{7})</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>(3^i \mod{7})</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>(4^i \mod{7})</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(5^i \mod{7})</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>(6^i \mod{7})</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>
So we conclude that modulo 7: 1 has order 1; 6 has order 2; 2 and 4 have order 3; and 3 and 5 have order 6. □

In the above example, we see that every element of \(\mathbb{Z}_7^* \) has multiplicative order either 1, 2, 3, or 6. In particular, \(\alpha^6 = 1 \) for all \(\alpha \in \mathbb{Z}_7^* \). This is a special case of Fermat’s little theorem:

Theorem 2.9 (Fermat’s little theorem). Let \(p \) be a prime and let \(\alpha \in \mathbb{Z}_p^* \). Then \(\alpha^{p-1} = 1 \).

Proof. Since \(\alpha \in \mathbb{Z}_p^* \), for every \(\beta \in \mathbb{Z}_p^* \) we have \(\alpha \beta \in \mathbb{Z}_p^* \), and so we may define the “multiplication by \(\alpha \)” map

\[
\tau_\alpha : \mathbb{Z}_p^* \to \mathbb{Z}_p^* \\
\beta \mapsto \alpha \beta.
\]

It is easy to see that \(\tau_\alpha \) is a bijection:

- **Injectivity:** If \(\alpha \beta = \alpha \beta' \), then cancel \(\alpha \) to obtain \(\beta = \beta' \).
- **Surjectivity:** For every \(\gamma \in \mathbb{Z}_p^* \), \(\alpha^{-1} \gamma \) is a pre-image of \(\gamma \) under \(\tau_\alpha \).

Thus, as \(\beta \) ranges over the set \(\mathbb{Z}_p^* \), so does \(\alpha \beta \), and we have

\[
\prod_{\beta \in \mathbb{Z}_p^*} \beta = \prod_{\beta \in \mathbb{Z}_p^*} (\alpha \beta) = \alpha^{p-1} \left(\prod_{\beta \in \mathbb{Z}_p^*} \beta \right). \tag{2.7}
\]

Canceling the common factor \(\prod_{\beta \in \mathbb{Z}_p^*} \beta \in \mathbb{Z}_p^* \) from the left- and right-hand side of (2.7), we obtain

\[
1 = \alpha^{p-1}. \tag{2.7}
\]

As a consequence of Fermat’s little theorem and Theorem 2.8, we see that for a prime \(p \), the multiplicative order of \(\alpha \) divides \(p - 1 \) for every \(\alpha \in \mathbb{Z}_p^* \). It turns out that for every prime \(p \), there exists an element \(\alpha \in \mathbb{Z}_p^* \) of whose multiplicative order is equal to \(p - 1 \). Such an \(\alpha \) is called a **primitive root mod \(p \)**. For instance, in Example 2.9, we saw that \([3]_7\) and \([5]_7\) are primitive roots mod 7. We shall prove this fact later (see Theorem 3.11), after developing some other tools. Observe that if \(\alpha \in \mathbb{Z}_p^* \) is a primitive root, then every \(\beta \in \mathbb{Z}_p^* \) can be expressed as a power of \(\alpha \).

Fermat’s little theorem is sometimes stated in the following form: for every prime \(p \) and every \(\alpha \in \mathbb{Z}_p \), we have

\[
\alpha^p = \alpha. \tag{2.8}
\]

Observe that for \(\alpha = 0 \), the equation (2.8) obviously holds. Otherwise, for \(\alpha \neq 0 \), Theorem 2.9 says that \(\alpha^{p-1} = 1 \), and multiplying both sides of this equation by \(\alpha \) yields (2.8).

Finally, in terms of congruences, Fermat’s little theorem can be stated as follows: for every prime \(p \) and every integer \(a \), we have

\[
a^p \equiv a \pmod{p}. \tag{2.9}
\]

2.6.1 Application: primality testing

Fermat’s little theorem forms the basis for several primality testing algorithms.

Consider the following computational problem: given a large number \(n \), decide whether \(n \) is prime or not. Here, we are thinking of \(n \) has being **very** large, perhaps several hundred decimal digits in length—these are the size of prime numbers needed in a number of cryptographic applications.
A naive approach to testing if n is prime is trial division: simply test if n is divisible by 2, 3, 5, etc., testing divisibility by all primes p up to $n^{1/2}$ (see Exercise 1.2). Unfortunately, for the large values of n we are considering here, this would take an enormous amount of time, and is completely impractical.

Fermat’s little theorem suggests the following primality test: simply select a non-zero $\alpha \in \mathbb{Z}_n$, compute $\beta := \alpha^{n-1} \in \mathbb{Z}_n$, and check if $\beta = 1$. On the one hand, if $\beta \neq 1$, Fermat’s little theorem tells us that n cannot be prime. On the other hand, if $\beta = 1$, the test is inconclusive: n may or may not be prime.

We can repeat the above test several times. If any of the β’s are not 1, we know n is not prime; otherwise, the test is still inconclusive.

While the Fermat primality test is not perfect, it is not hard to modify it slightly so that it becomes much more effective—the most practical primality tests used today are all minor variations on the Fermat primality test. We shall not go into the details of these variations. Rather, we shall show how to efficiently implement the Fermat primality test. The techniques we present apply to the more effective primality tests, and have many other applications.

The first issue to be addressed is how to represent elements of \mathbb{Z}_n. It is natural and convenient to work with the set of representatives $\{0, \ldots, n-1\}$. So to multiply two elements in \mathbb{Z}_n, we multiply their representatives, and then reduce the product mod n. Just as in §1.4, we shall assume that we have efficient algorithms to implement these basic arithmetic operations. That still leaves the issue of how to efficiently perform the exponentiation α^{n-1}.

A simple algorithm to compute $\beta := \alpha^{n-1}$ is the following:

$$
\beta \leftarrow [1]_n \in \mathbb{Z}_n \\
\text{repeat } n - 1 \text{ times} \\
\quad \beta \leftarrow \beta \cdot \alpha
$$

This algorithm computes the value β correctly. Moreover, the numbers that arise in the computation never get too large, since in every multiplication in \mathbb{Z}_n, the result gets reduced mod n. Unfortunately, the number of loop iterations is $n - 1$, and so this algorithm is actually slower than the trial division primality test that we started out with.

Fortunately, there is a much faster exponentiation algorithm, called \textit{repeated squaring}. Consider the following more general problem: given $\alpha \in \mathbb{Z}_n$ and a nonnegative integer e, compute α^e. Using the repeated squaring algorithm, we can compute α^e using $O(\log e)$ multiplications in \mathbb{Z}_n. Setting $e := n - 1$, we can therefore implement the Fermat primality test using $O(\log n)$ multiplications in \mathbb{Z}_n, which is much more practical.

As a warmup, suppose e is a power of 2, say $e = 2^k$. Then the following simple algorithm computes $\beta := \alpha^e$:

$$
\beta \leftarrow \alpha \\
\text{repeat } k \text{ times} \\
\quad \beta \leftarrow \beta^2
$$

This algorithm requires just $k = \log_2 e$ multiplications in \mathbb{Z}_n.

For arbitrary e, we can use the following strategy. Suppose that the binary representation of e is $e = (b_1 \cdots b_k)_2$, where b_1 is the high-order bit of e and b_k is the low-order bit. Then the following iterative algorithm computes $\beta := \alpha^e$:

$$
\beta \leftarrow [1]_n \in \mathbb{Z}_n \\
\text{for } i \text{ in } [1 \ldots k] \text{ do} \\
\quad \beta \leftarrow \beta^2 \\
\quad \text{if } b_i = 1 \text{ then } \beta \leftarrow \beta \cdot \alpha
$$

29
One can easily verify that after the ith loop iteration, we have $\beta = \alpha^{e_i}$, where $e_i = (b_1 \cdots b_i)_2$. Indeed, observe that $e_i = 2e_{i-1} + b_i$, and therefore,

$$\alpha^{e_i} = \alpha^{2e_{i-1} + b_i} = (\alpha^{e_{i-1}})^2 \cdot \alpha^{b_i}.$$

Example 2.10. Suppose $e = 37 = (100101)_2$. The above algorithm performs the following operations in this case:

```
// computed exponent (in binary)
\beta \leftarrow [1]  // 0
\beta \leftarrow \beta^2, \beta \leftarrow \beta \cdot \alpha  // 1
\beta \leftarrow \beta^2  // 10
\beta \leftarrow \beta^2  // 100
\beta \leftarrow \beta^2, \beta \leftarrow \beta \cdot \alpha  // 1001
\beta \leftarrow \beta^2  // 10010
\beta \leftarrow \beta^2, \beta \leftarrow \beta \cdot \alpha  // 100101 .  \square
```

Exercise 2.23. Suppose $\alpha \in \mathbb{Z}_n^*$ has multiplicative order k. Let m be any integer. Show that α^m has multiplicative order $k / \gcd(m, k)$. Hint: use Theorem 2.8, along with part (ii) of Theorem 2.5.

Exercise 2.24. Suppose $\alpha \in \mathbb{Z}_n^*$ has multiplicative order k and $\beta \in \mathbb{Z}_n^*$ has multiplicative order ℓ, where $\gcd(k, \ell) = 1$. Show that $\alpha \beta$ has multiplicative order $k\ell$. Hint: suppose $(\alpha \beta)^m = 1$, and deduce that both sides of the equation $\alpha^m = \beta^{-m}$ must have multiplicative order 1 (the previous exercise may be helpful); from this, deduce that both k and ℓ divide m and then apply the result of Exercise 1.11.

Exercise 2.25. Let $\alpha \in \mathbb{Z}_n^*$. Suppose that for a prime q and positive integer e, we have

$\alpha^q = 1$ and $\alpha^{q^{e-1}} \neq 1$.

Show that α has multiplicative order q^e.

Exercise 2.26. Find all primitive roots mod 19. Show your work.

Exercise 2.27. Let $n \in \mathbb{Z}$ with $n > 1$. Show that n is prime if and only if $\alpha^{n-1} = 1$ for every non-zero $\alpha \in \mathbb{Z}_n$.

Exercise 2.28. Let p be any prime other than 2 or 5. Show that p divides infinitely many of the numbers 9, 99, 999, etc.

Exercise 2.29. Let n be an integer greater than 1. Show that n does not divide $2^n - 1$. Hint: assume that n divides $2^n - 1$; now consider a prime p which divides n, so that p also divides $2^n - 1$, and derive a contradiction.

Exercise 2.30. This exercise develops an alternative proof of Fermat’s little theorem.

(a) Using Exercise 1.14, show that for all primes p and integers a, we have $(a + 1)^p \equiv a^p + 1 \pmod{p}$.

(b) Now derive Fermat’s little theorem from part (a).

Exercise 2.31. Compute 3^{99} mod 100 using the repeated squaring algorithm. Show your work.
Chapter 3

Rings and polynomials

This chapter introduces the notion of polynomials whose coefficients are in a general algebraic structure called a “ring”. So to begin with, we introduce the mathematical notion of a ring. While there is a lot of terminology associated with rings, the basic ideas are fairly simple. Intuitively speaking, a ring is just a structure with addition and multiplication operations that behave exactly as one would expect—there are very few surprises.

3.1 Rings: Definitions, examples, and basic properties

Definition 3.1 (Ring). A ring is a set R together with addition and multiplication operations on R, such that:

(i) addition is commutative and association;

(ii) there exists an additive identity (or zero element), denoted 0_R, where $a + 0_R = a$ for all $a \in R$;

(iii) every $a \in R$ has an additive inverse, denoted $-a$, where $a + (-a) = 0_R$;

(iv) multiplication is commutative and associative; we have $a(bc) = (ab)c$;

(v) there exists a multiplicative identity, denoted 1_R, where $a \cdot 1_R = a$ for all $a \in R$;

(vi) multiplication distributes over addition; that is, for all $a, b, c \in R$, we have $a(b + c) = ab + ac$.

Note that in this definition, the only property that connects addition and multiplication is the distributive law (property (vi)). If the ring R is clear from context, we may just write 0 and 1 instead of 0_R and 1_R.

Example 3.1. The set \mathbb{Z} under the usual rules of multiplication and addition forms a ring. □

Example 3.2. For $n \geq 1$, the set \mathbb{Z}_n under the rules of multiplication and addition defined in §2.5 forms a ring. □

Example 3.3. The set \mathbb{Q} of rational numbers under the usual rules of multiplication and addition forms a ring. □

Example 3.4. The set \mathbb{R} of real numbers under the usual rules of multiplication and addition forms a ring. □
Example 3.5. The set \(\mathbb{C} \) of complex numbers under the usual rules of multiplication and addition forms a ring. Every \(\alpha \in \mathbb{C} \) can be written (uniquely) as \(\alpha = a + bi \), where \(a, b \in \mathbb{R} \) and \(i = \sqrt{-1} \). If \(\alpha' = a' + b'i \) is another complex number, with \(a', b' \in \mathbb{R} \), then

\[
\alpha + \alpha' = (a + a') + (b + b')i \quad \text{and} \quad \alpha \alpha' = (aa' - bb') + (ab' + a'b)i.
\]

Example 3.6. The trivial ring consists of a single element. It is not a very interesting ring.

We state some simple facts:

Theorem 3.2. Let \(R \) be a ring. Then:

(i) the additive and multiplicative identities are unique;
(ii) for all \(a, b, c \in R \), if \(a + b = a + c \), then \(b = c \);
(iii) \(-(a + b) = (-a) + (-b) \) for all \(a, b \in R \);
(iv) \(-(-a) = a \) for all \(a \in R \);
(v) \(0_R \cdot a = 0_R \) for all \(a \in R \);
(vi) \((-a)b = -(ab) = a(-b) \) for all \(a, b \in R \);
(vii) \((-a)(-b) = ab \) for all \(a, b \in R \).

While there are many parts to this theorem, everything in it just states familiar properties that are satisfied by ordinary numbers. What is interesting about this theorem is that all of these properties follow directly from Definition 3.1. We shall not prove these properties here, but invite the reader to do so as a straightforward exercise.

Because addition and multiplication in a ring \(R \) are associative, for \(a_1, \ldots, a_k \in \mathbb{Z}_n \), we may write the sum \(a_1 + \cdots + a_k \) and the product \(a_1 \cdots a_k \) without any parentheses, and there is no ambiguity; moreover, since both addition and multiplication are commutative, we may rearrange the terms in such sums and products without changing their values. We can write the sum as \(\sum_{i=1}^{k} a_i \) and the product as \(\prod_{i=1}^{k} a_i \). By convention, if \(k = 0 \), the sum is \(0_R \) and the product is \(1_R \). If all of the \(a_i \)'s are equal to \(a \), we can write the sum as \(ka \) and the product as \(a^k \). Note that the additive inverse of \(\sum_{i=1}^{k} a_i \) is \(\sum_{i=1}^{k} (-a_i) \), and the additive inverse of \(ka \) is \(k(-a) \), which we can also write as \((-k)a \).

One other matter of notation: for \(a, b \in R \), we can write \(a - b \) instead of \(a + (-b) \).

3.1.1 Multiplicative inverses and fields

While the definition of a ring requires that every element has an additive inverse, it does not require that any element has a multiplicative inverse.

Definition 3.3 (Multiplicative inverses in a ring). Let \(R \) be a ring. For \(a \in R \), we say that \(b \in R \) is a multiplicative inverse of \(a \) if \(ab = 1_R \). We define \(R^* \) to be the set of all elements of \(R \) that have a multiplicative inverse.

Example 3.7. In the ring \(\mathbb{Q} \), every non-zero element has a multiplicative inverse. The same holds for the rings \(\mathbb{R} \) and \(\mathbb{C} \). \(\square \)
Example 3.8. In the ring \(\mathbb{Z} \), the only elements with multiplicative inverse are \(\pm 1 \). That is, \(\mathbb{Z}^* = \{ \pm 1 \} \). While the integer 2 has a multiplicative inverse \(1/2 \in \mathbb{Q} \), it does not have a multiplicative inverse in \(\mathbb{Z} \). □

Example 3.9. As we saw in §2.5, \(\mathbb{Z}_n^* = \{ [a]_n : \gcd(a, n) = 1 \} \). □

Example 3.10. If \(R \) is a ring, then \(1_R \in R^* \) (this follows from the fact that \(1_R \cdot 1_R = 1_R \), by definition). Moreover, if \(R \) is non-trivial ring, then we have \(0_R \neq 1_R \), and moreover, \(0_R \notin R^* \) (these observations follow from part (v) of Theorem 3.2). □

Let \(R \) be a ring. If \(a \in R^* \), then it is not hard to prove that the multiplicative inverse must be unique, and it is denoted \(a^{-1} \). It is not hard to see that if \(a, b \in R^* \), then so are \(a^{-1} \) and \(ab \); indeed, one can easily verify that we must have

\[
(a^{-1})^{-1} = a \quad \text{and} \quad (ab)^{-1} = a^{-1}b^{-1}.
\]

If \(a \) has a multiplicative inverse \(a^{-1} \), and \(k \) is a nonnegative integer, then the multiplicative inverse of \(a^k \) is \((a^{-1})^k \), which we may write as \(a^{-k} \). Naturally, for \(a \in R \) and \(b \in R^* \), we may write \(a/b \) instead of \(ab^{-1} \).

As the above examples demonstrate, it need not be the case that every non-zero element in a ring has a multiplicative inverse. However, rings with this property are especially nice and deserve to be singled out:

Definition 3.4 (Field). A non-trivial ring where every non-zero element has a multiplicative inverse is called a field.

Example 3.11. The rings \(\mathbb{Q} \), \(\mathbb{R} \), and \(\mathbb{C} \) are fields. □

Example 3.12. The ring \(\mathbb{Z} \) is not a field. □

Example 3.13. The ring \(\mathbb{Z}_n \) is a field of and only if \(n \) is prime. □

Exercise 3.1. Show that the product of two non-zero elements in a field is also non-zero.

Exercise 3.2. Give an example of a ring \(R \) and two non-zero elements \(a, b \in R \) such \(ab = 0_R \).

Exercise 3.3. We can generalize the notion of an ideal, introduced in §1.2, to an arbitrary ring \(R \). A non-empty subset \(I \) of \(R \) is called an ideal of \(R \) if for all \(i, i' \in I \) and all \(r \in R \), we have

\[
i + i' \in I \quad \text{and} \quad ir \in I.
\]

(a) Show that \(\{0_R\} \) is an ideal of \(R \) and that every ideal of \(R \) must contain \(0_R \).

(b) Show that \(R \) is an ideal of \(R \) and that for any ideal \(I \) of \(R \), we have \(I = R \) if and only if \(1_R \in I \).

(c) For \(a \in R \), show that \(aR := \{as : s \in R\} \) is an ideal of \(R \).

(d) Show that if \(I \) and \(J \) are ideals of \(R \), then so is \(I + J := \{i + j : i \in I, j \in J\} \).
3.2 Polynomial rings

If \(R \) is a ring, then we can form the **ring of polynomials** \(R[x] \), consisting of all polynomials \(g = a_0 + a_1x + \cdots + a_kx^k \) in the indeterminate, or “formal” variable, \(x \), with coefficients \(a_i \) in \(R \), and with addition and multiplication defined in the usual way.

Example 3.14. Let us define a few polynomials over the ring \(\mathbb{Z} \):

\[
a := 3 + x^2, \quad b := 1 + 2x - x^3, \quad c := 5, \quad d := 1 + x, \quad e := x, \quad f := 4x^3.
\]

We have

\[
a + b = 4 + 2x + x^2 - x^3, \quad a \cdot b = 3 + 6x + x^2 - x^3 - x^5, \quad cd + ef = 5 + 5x + 4x^4. \quad \square
\]

As illustrated in the previous example, elements of \(R \) are also considered to be polynomials. Such polynomials are called **constant polynomials**. In particular, \(0_R \) is the additive identity in \(R[x] \) and \(1_R \) is the multiplicative identity in \(R[x] \). Note that if \(R \) is the trivial ring, then so is \(R[x] \).

So as to keep the distinction between ring elements and indeterminates clear, we shall use the symbol “\(x \)” only to denote the latter. Also, for a polynomial \(g \in R[x] \), we shall in general write this simply as “\(g \),” and not as “\(g(x) \).” Of course, the choice of the symbol “\(x \)” is arbitrary.

3.2.1 Formalities

For completeness, we present a more formal definition of the ring \(R[x] \). The reader should bear in mind that this formalism is rather tedious, and may be more distracting than it is enlightening. Formally, a polynomial \(g \in R[x] \) is an infinite sequence \((a_0, a_1, a_2, \ldots) \), where each \(a_i \in R \), but only finitely many of the \(a_i \)'s are non-zero (intuitively, \(a_i \) represents the coefficient of \(X^i \)).

For

\[
g = (a_0, a_1, a_2, \ldots) \in R[x] \quad \text{and} \quad h = (b_0, b_1, b_2, \ldots) \in R[x],
\]

we define

\[
g + h := (s_0, s_1, s_2, \ldots) \quad \text{and} \quad gh := (p_0, p_1, p_2, \ldots),
\]

where for \(i = 0, 1, 2, \ldots, \)

\[
s_i := a_i + b_i
\]

(3.1)

and

\[
p_i := \sum_{i=j+k} a_jb_k,
\]

(3.2)

the sum being over all pairs \((j, k)\) of non-negative integers such that \(i = j + k \) (which is a finite sum). We leave it to the reader to verify that \(g + h \) and \(gh \) are polynomials (i.e., only finitely many of the \(s_i \)'s and \(p_i \)'s are non-zero). The reader may also verify that all the requirements of Definition 3.1 are satisfied: the additive identity is the all-zero sequence \((0_R, 0_R, 0_R, \ldots)\); the multiplicative identity is the sequence \((1_R, 0_R, 0_R, \ldots)\), that is, the sequence consists of \(1_R \) followed by all zeros.

For \(c \in R \), we can identify \(c \) with the corresponding “constant” polynomial \((c, 0_R, 0_R, \ldots)\). If we define the polynomial

\[
x := (0_R, 1_R, 0_R, 0_R, \ldots),
\]

then for any polynomial \(g = (a_0, a_1, a_2, \ldots) \), if \(a_i = 0_R \) for all \(i \) exceeding some value \(k \), then we have \(g = \sum_{i=0}^k a_iX^i \), and so we can return to the standard practice of writing polynomials as we did in Example 3.14, without any loss of precision.
3.2.2 Basic properties of polynomials

Let \(R \) be a ring. For non-zero \(g \in R[\mathbf{x}] \), if \(g = \sum_{i=0}^{k} a_i \mathbf{x}^i \) with \(a_k \neq 0 \), then we call \(k \) the **degree** of \(g \), denoted \(\text{deg}(g) \), we call \(a_k \) the **leading coefficient** of \(g \), denoted \(\text{lc}(g) \), and we call \(a_0 \) the **constant term** of \(g \). If \(\text{lc}(g) = 1 \), then \(g \) is called **monic**.

Suppose \(g = \sum_{i=0}^{k} a_i \mathbf{x}^i \) and \(h = \sum_{i=0}^{\ell} b_i \mathbf{x}^i \) are polynomials such that \(a_k \neq 0 \) and \(b_\ell \neq 0 \), so that \(\text{deg}(g) = k \) and \(\text{lc}(g) = a_k \), and \(\text{deg}(h) = \ell \) and \(\text{lc}(h) = b_\ell \). When we multiply these two polynomials, we get

\[
gh = a_0 b_0 + (a_0 b_1 + a_1 b_0) \mathbf{x} + \cdots + a_k b_\ell \mathbf{x}^{k+\ell}.
\]

In particular, if \(gh \neq 0 \), then \(\text{deg}(gh) \leq \text{deg}(g) + \text{deg}(h) \). Note that if \(R \) is a field, we must have \(a_k b_\ell \neq 0 \), and so \(\text{deg}(gh) = \text{deg}(g) + \text{deg}(h) \) in this case.

For the zero polynomial, we establish the following conventions: its leading coefficient and constant term are defined to be \(0_R \), and its degree is defined to be \(-\infty \). With these conventions, we may succinctly state that

for all \(g, h \in R[\mathbf{x}] \), we have \(\text{deg}(gh) \leq \text{deg}(g) + \text{deg}(h) \), and equality always holds if \(R \) is a field.

3.2.3 Polynomial evaluation

A polynomial \(g = \sum_{i=0}^{k} a_i \mathbf{x}^i \in R[\mathbf{x}] \) naturally defines a polynomial function on \(R \) that sends \(x \in R \) to \(\sum_{i=0}^{k} a_i x^i \in R \), and we denote the value of this function as \(g(x) \) (note that “\(\mathbf{x} \)” denotes an indeterminate, while “\(x \)” denotes an element of \(R \)). As usual, we define \(x \in R \) to be a **root** of \(g \) if \(g(x) = 0 \).

It is important to regard polynomials over \(R \) as formal expressions, and **not** to identify them with their corresponding functions. In particular, two polynomials are equal if and only if their coefficients are equal, while two functions are equal if and only if their values agree at all points in \(R \). This distinction is important, since there are rings \(R \) over which two different polynomials define the same function. One can of course define the ring of polynomial functions on \(R \), but in general, that ring has a different structure from the ring of polynomials over \(R \).

Example 3.15. In the ring \(\mathbb{Z}_p \), for prime \(p \), by Fermat’s little theorem, we have \(x^p = x \) for all \(x \in \mathbb{Z}_p \). However, the polynomials \(x^p \) and \(x \) are not the same polynomials (in particular, the former has degree \(p \), while the latter has degree 1). \(\square \)

An obvious, yet important, fact is the following:

Theorem 3.5. Let \(R \) be a ring. For all \(g, h \in R[\mathbf{x}] \) and \(x \in R \), if \(s := g + h \in R[\mathbf{x}] \) and \(p := gh \in R[\mathbf{x}] \), then we have

\[
s(x) = g(x) + h(x) \quad \text{and} \quad p(x) = g(x)h(x).
\]

Proof. The proof is really just symbol pushing. Indeed, suppose \(g = \sum_i a_i \mathbf{x}^i \) and \(h = \sum_j b_j \mathbf{x}^j \). Then \(s = \sum_i (a_i + b_i) \mathbf{x}^i \), and so

\[
s(x) = \sum_i (a_i + b_i) x^i = \sum_i a_i x^i + \sum_i b_i x^i = g(x) + h(x).
\]

Also, we have

\[
p = \left(\sum_i a_i \mathbf{x}^i \right) \left(\sum_j b_j \mathbf{x}^j \right) = \sum_{i,j} a_i b_j \mathbf{x}^{i+j},
\]

35
and employing the result for evaluating sums of polynomials, we have
\[p(x) = \sum_{i,j} a_ib_jx^{i+j} = \left(\sum_i a_ix^i \right) \left(\sum_j b_jx^j \right) = g(x)h(x). \]

3.2.4 Polynomial interpolation

The reader is surely familiar with the fact that two points determine a line, in the context of real numbers. The reader is perhaps also familiar with the fact that over the real (or complex) numbers, every polynomial of degree \(k \) has at most \(k \) distinct roots, and the fact that every set of \(k \) points can be interpolated by a unique polynomial of degree less than \(k \). As we will now see, these results extend to arbitrary fields.\(^1\)

Let \(F \) be a field, and consider the ring of polynomials \(F[x] \). Analogous to integers, we can define a notion of divisibility for \(F[x] \): for polynomials \(g, h \in F[x] \) we say that \(g \) divides \(h \), which we may write as \(g \mid h \), if \(gz = h \) for some \(z \in F[x] \).

Just like the integers, there is a corresponding division with remainder property for polynomials:

Theorem 3.6 (Division with remainder property). Let \(F \) be a field. For all \(g, h \in F[x] \) with \(h \neq 0 \), there exist unique \(q, r \in F[x] \) such that \(g = hq + r \) and \(\deg(r) < \deg(h) \).

Proof. Consider the set \(S := \{ g - ht : t \in F[x] \} \). Let \(r = g - hq \) be an element of \(S \) of minimum degree. We must have \(\deg(r) < \deg(h) \), since otherwise, we could subtract an appropriate multiple of \(h \) from \(r \) so as to eliminate the leading coefficient of \(r \), obtaining
\[
 r' := r - h \cdot (\text{lcm}(r) \text{lcm}(h)^{-1}x^{\deg(r) - \deg(h)}) \in S,
\]
where \(\deg(r') < \deg(r) \), contradicting the minimality of \(\deg(r) \).

That proves the existence of \(r \) and \(q \). For uniqueness, suppose that \(g = hq + r \) and \(g = hq' + r' \), where \(\deg(r) < \deg(h) \) and \(\deg(r') < \deg(h) \). This implies \(r' - r = h \cdot (q - q') \). However, if \(q \neq q' \), then
\[
 \deg(h) > \deg(r' - r) = \deg(h \cdot (q - q')) = \deg(h) + \deg(q - q') \geq \deg(h),
\]
which is impossible. Therefore, we must have \(q = q' \), and hence \(r = r' \). \(\square \)

If \(g = hq + r \) as in the above theorem, we define \(g \mod h := r \). Clearly, \(h \mid g \) if and only if \(g \mod h = 0 \). Moreover, note that if \(\deg(g) < \deg(h) \), then \(q = 0 \) and \(r = g \); otherwise, if \(\deg(g) \geq \deg(h) \), then \(q \neq 0 \) and \(\deg(g) = \deg(h) + \deg(q) \).

Theorem 3.7. Let \(F \) be a field, \(g \in F[x] \), and \(x \in F \) be a root of \(g \). Then \((x - x) \) divides \(g \).

Proof. Using the division with remainder property for polynomials, there exist \(q, r \in F[x] \) such that \(g = (x - x)q + r \), with \(q, r \in F[x] \) and \(\deg(r) < 1 \), which means that \(r \in F \). Evaluating at \(x \), we see that \(g(x) = (x - x)q(x) + r = r \). Since \(x \) is a root of \(g \), we must have \(r = 0 \), and therefore, \(g = (x - x)q \), and so \((x - x) \) divides \(g \). \(\square \)

Theorem 3.8. Let \(F \) be a field, and let \(x_1, \ldots, x_k \) be distinct elements of \(F \). Then for every polynomial \(g \in F[x] \), the elements \(x_1, \ldots, x_k \) are roots of \(g \) if and only if the polynomial \(\prod_{i=1}^k (x - x_i) \) divides \(g \).

\(^1\)In fact, much of what we discuss here extends, with some modification, to more general coefficient rings.
Proof. One direction is trivial: if \(\prod_{i=1}^{k}(X-x_i) \) divides \(g \), then it is clear that each \(x_i \) is a root of \(g \). We prove the converse by induction on \(k \). The base case \(k = 1 \) is just Theorem 3.7. So assume \(k > 1 \), and that the statement holds for \(k - 1 \). Let \(g \in F[X] \) and let \(x_1, \ldots, x_k \) be distinct roots of \(g \). Since \(x_k \) is a root of \(g \), then by Theorem 3.7, there exists \(q \in F[X] \) such that \(g = (X-x_k)q \). Moreover, for each \(i = 1, \ldots, k-1 \), we have

\[
0 = g(x_i) = (x_i-x_k)q(x_i),
\]

and since \(x_i-x_k \neq 0 \) and \(F \) is a field, we must have \(q(x_i) = 0 \). Thus, \(q \) has roots \(x_1, \ldots, x_{k-1} \), and by induction \(\prod_{i=1}^{k-1}(X-x_i) \) divides \(q \), from which it then follows that \(\prod_{i=1}^{k}(X-x_i) \) divides \(g \). \(\square \)

As an immediate consequence of this theorem, we obtain:

Theorem 3.9. Let \(F \) be a field, and suppose that \(g \in F[X] \), with \(\deg(g) = k \geq 0 \). Then \(g \) has at most \(k \) distinct roots.

Proof. If \(g \) had \(k + 1 \) distinct roots \(x_1, \ldots, x_{k+1} \), then by the previous theorem, the polynomial \(\prod_{i=1}^{k+1}(X-x_i) \), which has degree \(k + 1 \), would divide \(g \), which has degree \(k \)—an impossibility. \(\square \)

Theorem 3.10 (Lagrange interpolation). Let \(F \) be a field, let \(x_1, \ldots, x_k \) be distinct elements of \(F \), and let \(y_1, \ldots, y_k \) be arbitrary elements of \(F \). Then there exists a unique polynomial \(g \in F[X] \) with \(\deg(g) < k \) such that \(g(x_i) = y_i \) for \(i = 1, \ldots, k \), namely

\[
g := \sum_{i=1}^{k} y_i \prod_{j \neq i}(X-x_j) / \prod_{j \neq i}(x_i-x_j).
\]

Proof. For the existence part of the theorem, one just has to verify that \(g(x_i) = y_i \) for the given \(g \), which clearly has degree less than \(k \). This is easy to see: for \(i = 1, \ldots, k \), evaluating the \(i \)th term in the sum defining \(g \) at \(x_i \) yields \(y_i \), while evaluating any other term at \(x_i \) yields \(0 \). The uniqueness part of the theorem follows almost immediately from Theorem 3.9: if \(g \) and \(h \) are polynomials of degree less than \(k \) such that \(g(x_i) = y_i = h(x_i) \) for \(i = 1, \ldots, k \), then \(g - h \) is a polynomial of degree less than \(k \) with \(k \) distinct roots, which, by the previous theorem, is impossible. \(\square \)

Given distinct \(x_1, \ldots, x_k \in F \) and arbitrary \(y_1, \ldots, y_k \in F \), as in Theorem 3.10, the coefficients \(a_0, \ldots, a_{k-1} \) of the interpolating polynomial \(g = \sum_i a_i X^i \in F[X] \) can be expressed as the unique solution to the following matrix equation:

\[
V := \begin{pmatrix}
1 & x_1 & \cdots & x_1^{k-1} \\
1 & x_2 & \cdots & x_2^{k-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_k & \cdots & x_k^{k-1}
\end{pmatrix}
\begin{pmatrix}
a_0 \\
a_1 \\
\vdots \\
a_{k-1}
\end{pmatrix} =
\begin{pmatrix}
y_1 \\
y_2 \\
\vdots \\
y_k
\end{pmatrix}.
\]

The matrix \(V \) is called a **Vandermonde matrix**. Note that one can derive the uniqueness part of Theorem 3.10 from the existence part by general facts from linear algebra. Indeed, the existence part implies that the column space of \(V \) has full rank \(k \), which means that the null space of \(V \) has dimension 0.

As an application of the results in this section, we give a simple proof that for every prime \(p \), there exists a primitive root mod \(p \) (see §2.6).
Theorem 3.11 (Existence of a primitive root). For every prime \(p \), there exists a primitive root mod \(p \).

Proof. Let \(p \) be a prime. We know by Theorem 2.8 that every element of \(\mathbb{Z}_p^* \) has multiplicative order dividing \(p - 1 \). We want to show that there exists an element \(\alpha \in \mathbb{Z}_p^* \) of order \(p - 1 \).

Suppose the factorization of \(p - 1 \) into primes is
\[
p - 1 = q_1^{e_1} \cdots q_r^{e_r}.
\]

Claim. For each \(i = 1, \ldots, r \), there exists an element \(\beta_i \in \mathbb{Z}_p^* \) of order \(q_i^{e_i} \).

The theorem follows from the claim by setting
\[
\alpha := \beta_1 \cdots \beta_r.
\]

The fact that \(\alpha \) has multiplicative order \(p - 1 \) follows from Exercise 2.24.

It remains to prove the claim. Fix \(i = 1, \ldots, r \), and set \(q := q_i \) and \(e := e_i \). We want to exhibit an element \(\beta \in \mathbb{Z}_p^* \) of order \(q^e \). Consider the polynomial
\[
X^{(p-1)/q} - 1 \in \mathbb{Z}_p[X].
\]

By Theorem 3.9, this has at most \((p - 1)/q\) distinct roots, so there must be some element of \(\mathbb{Z}_p^* \) that is not a root of this polynomial. Fix such an element \(\gamma \in \mathbb{Z}_p^* \). So we have
\[
\gamma^{(p-1)/q} \neq 1.
\]

We contend that
\[
\beta := \gamma^{(p-1)/q^e}
\]
does the job. On the one hand, we have
\[
\beta^{q^e} = (\gamma^{(p-1)/q^e})^{q^e} = \gamma^{p-1} = 1.
\]

On the other hand, we have
\[
\beta^{q^e-1} = (\gamma^{(p-1)/q^e})^{q^e-1} = \gamma^{(p-1)/q} \neq 1.
\]

The fact that \(\beta \) has multiplicative order \(q^e \) follows from Exercise 2.25. \(\square \)

Exercise 3.5. Consider the field \(F = \mathbb{Z}_5 \). Use the Lagrange interpolation formula to compute the coefficients of the polynomial \(g \in F[x] \) of degree less than 3 such that
\[
g([1]) = [2], \quad g([2]) = [1], \quad g([3]) = [4].
\]

Show your work.

Exercise 3.6. Suppose \(F \) is a field and let \(g, h \in F[x] \). Show that if \(g \mid h \) and \(h \mid g \), then \(g = ch \) for some \(c \in F^* \).

Exercise 3.7. Let \(F \) be an infinite field, and let \(g, h \in F[x] \). Show that if \(g(x) = h(x) \) for all \(x \in F \), then \(g = h \). Thus, for an infinite field \(F \), there is a one-to-one correspondence between polynomials over \(F \) and polynomial functions on \(F \).
Exercise 3.8. Let F be a field.

(a) Show that for all $b \in F$, we have $b^2 = 1$ if and only if $b = \pm 1$.

(b) Show that for all $a, b \in F$, we have $a^2 = b^2$ if and only if $a = \pm b$.

(c) Show that the familiar **quadratic formula** holds for F, assuming that $2_F := 1_F + 1_F \neq 0_F$.

That is, for all $a, b, c \in F$ with $a \neq 0_F$, the polynomial $g := aX^2 + bX + c \in F[X]$ has a root in F if and only if there exists $e \in F$ such that $e^2 = d$, where d is the **discriminant** of g, defined as $d := b^2 - 4ac$, and in this case the roots of g are $(-b \pm e)/2a$.

Exercise 3.9. Let F be a field. Show that every ideal of $F[X]$ is of the form $dF[X]$ for some $d \in F[X]$ (see Exercise 3.3). Hint: mimic the proof of Theorem 1.6. Note: this fact can be used to prove the polynomial analog of Theorem 1.3.