Congruences

Definition: n is a positive integer, $a, b \in \mathbb{Z}$

$$a \equiv b \pmod{n} \text{ means } a = b + ny \text{ for some } y \in \mathbb{Z}$$

Equivalently, $n \mid (a - b)$

Fact: for fixed n, the binary relation “$\cdot \equiv \cdot \pmod{n}$” is an equivalence relation on the set \mathbb{Z}

Fact: Let $a, a', b, b', n \in \mathbb{Z}$ with $n > 0$. If

then

$$a \equiv a' \pmod{n} \text{ and } b \equiv b' \pmod{n}$$

$$a + b \equiv a' + b' \pmod{n} \text{ and } a \cdot b \equiv a' \cdot b' \pmod{n}$$

Proof: Suppose $a = a' + nx, b = b' + ny$

$$a + b = a' + b' + n(x + y)$$

$$ab = (a' + nx)(b' + ny) = a'b' + n(a'y + b'x + nxy)$$
Example: Divisibility-by-3 rule

\[x = 25614 \]

Add the digits: \[2 + 5 + 6 + 1 + 4 = 18 \] is divisible by 3

\[\therefore x \text{ is divisible by 3} \]

Why does this work?

Suppose \(x = (a_{k-1} \cdots a_0)_{10} \), so \(x = \sum_{i=0}^{k-1} a_i 10^i \)

Key observation: \(10 \equiv 1 \pmod{3} \)

So \(10^i \equiv 1^i \equiv 1 \pmod{3} \)

So \(x \equiv \sum_i 10^i a_i \equiv \sum_i a_i \pmod{3} \)
Fact: Let $a, n \in \mathbb{Z}$ with $n > 0$. Then there exists a unique integer z such that $z \equiv a \pmod{n}$ and $z \in \{0, \ldots, n - 1\}$

Proof: Follows from division: $a = nq + z$, where $0 \leq z < n$

Example: Find integer solutions to $3z + 4 \equiv 6 \pmod{7}$

Subtract 4 from both sides: $3z \equiv 2 \pmod{7}$

Since $5 \cdot 3 \equiv 15 \equiv 1 \pmod{7}$, we can multiply both sides by 5: $z \equiv 3 \pmod{7}$

\therefore z is a solution to $3z + 4 \equiv 6 \pmod{7} \iff z \equiv 3 \pmod{7}$

\therefore the set of solutions is $\{7y + 3 : y \in \mathbb{Z}\}$:

$\ldots, -18, -11, -4, 3, 10, 17, 24, \ldots$
Solving Linear Congruences

Theorem: Let $a, n \in \mathbb{Z}$ with $n > 0$, and let $d := \gcd(a, n)$

(i) $az \equiv b \pmod{n}$ has a solution $z \in \mathbb{Z} \iff d \mid b$

\[
az \equiv b \pmod{n} \quad \text{for some } z \in \mathbb{Z} \\
\iff az = b + ny \quad \text{for some } z, y \in \mathbb{Z} \text{ (by def'n of congruence)} \\
\iff az - ny = b \quad \text{for some } z, y \in \mathbb{Z} \\
\iff d \mid b \quad \text{(by GCD theorem)}
\]

(ii) $az \equiv 0 \pmod{n} \iff z \equiv 0 \pmod{n/d}$

\[
n \mid az \iff n/d \mid (a/d)z \\
\iff n/d \mid z \quad \text{(because } \gcd(a/d, n/d) = 1)\]

(iii) $az \equiv az' \pmod{n} \iff z \equiv z' \pmod{n/d}$

\[
az \equiv az' \pmod{n} \iff a(z - z') \equiv 0 \pmod{n} \\
\iff z - z' \equiv 0 \pmod{n/d} \quad \text{(by part (ii))}
\]
Example: \(n = 15 \) and \(a = 1, 2, 3, 4, 5, 6 \)

<table>
<thead>
<tr>
<th>(z)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>2z</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>3z</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>4z</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>3</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>5z</td>
<td>0</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>6z</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>3</td>
<td>9</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>3</td>
<td>9</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>
A cancellation law: if \(\gcd(a, n) = 1 \) and \(az \equiv az' \pmod{n} \), then \(z \equiv z' \pmod{n} \).

Modular inverses: the congruence \(az \equiv 1 \pmod{n} \) has a sol’n \(z \iff \gcd(a, n) = 1 \)
if it has a sol’n a unique sol’n \(z \in \{0, \ldots, n-1\} \)

Notation: \(z = a^{-1} \pmod{n} \)

Terminology: “multiplicative inverse of \(a \) modulo \(n \)”

Computing modular inverses:

- Assume \(0 \leq a < n \) (replace \(a \) by \(a \pmod{n} \) if not)
- \((d, s, t) \leftarrow \text{ExtEuclid}(n, a)\)
- \(d = \gcd(n, a)\) and \(ns + at = d\)
- \(d \neq 1 \implies \) no inverse
- \(d = 1 \implies \) inverse is \(t \pmod{n} \)
Solving linear congruences and modular inverses

Consider the solutions \(z \in [0..n) \) to \(az \equiv b \pmod{n} \)

Let \(d := \gcd(a, n) \)

If \(d = 1 \), then there is a unique solution \(z := tb \pmod{n} \),
where \(t := a^{-1} \pmod{n} \)

Suppose \(d > 1 \) and \(d \mid b \) (o/w, no solutions)

\[
az \equiv b \pmod{n} \iff a'z \equiv b' \pmod{n'},
\]
where \(a' := a/d \), \(b' := b/d \), \(n' := n/d \)

We have \(\gcd(a', n') = 1 \)

Let \(t' := (a')^{-1} \pmod{n'} \) and set \(z' := t'b' \pmod{n'} \)

There are \(d \) solutions to the original congruence mod \(n \):

\[
z', \ z' + n', \ldots, \ z' + (d - 1)n'
\]
Residue Classes

We know: for any fixed positive integer n, the binary relation “$\cdot \equiv \cdot \pmod{n}$” is an equivalence relation on the set \mathbb{Z}

This relation partitions the set \mathbb{Z} into equivalence classes — called residue classes mod n

We denote the equivalence class containing the integer a by $[a]_n$ — or $[a]$ when n is clear from context

$$z \in [a] \iff z \equiv a \pmod{n} \iff z = a + ny \text{ for some } y \in \mathbb{Z}$$

and hence

$$[a] = a + n\mathbb{Z} := \{a + ny : y \in \mathbb{Z}\}$$
Notation: \mathbb{Z}_n is the set of residue classes mod n

Fact: \mathbb{Z}_n consists of the n distinct residue classes $[0], [1], \ldots, [n-1]$

We can “equip” \mathbb{Z}_n with $+$ and \cdot operators:

$$[a] + [b] := [a + b]$$

$$[a] \cdot [b] := [a \cdot b]$$

Note: def’n is unambiguous: if $[a] = [a']$ and $[b] = [b']$, then $[a + b] = [a' + b']$ and $[a \cdot b] = [a' \cdot b']$

Note:

$$[a] + [b] = [c] \iff a + b \equiv c \pmod{n},$$

and

$$[a] \cdot [b] = [c] \iff a \cdot b \equiv c \pmod{n},$$
Example: residue classes mod $n = 6$

$[0] = \{ \ldots, -12, -6, 0, 6, 12, \ldots \}$

$[1] = \{ \ldots, -11, -5, 1, 7, 13, \ldots \}$

$[2] = \{ \ldots, -10, -4, 2, 8, 14, \ldots \}$

$[3] = \{ \ldots, -9, -3, 3, 9, 15, \ldots \}$

$[4] = \{ \ldots, -8, -2, 4, 10, 16, \ldots \}$

$[5] = \{ \ldots, -7, -1, 5, 11, 17, \ldots \}$.

\[
\begin{array}{ccccccc}
\end{array}
\quad
\begin{array}{ccccccc}
[0] & [0] & [0] & [0] & [0] & [0] & [0] \\
\end{array}
\]
Algebraic properties of \mathbb{Z}_n

Addition and multiplication are commutative and associative

Multiplication distributes over addition:
$\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$ for all $\alpha, \beta, \gamma \in \mathbb{Z}_n$

[0] is the additive identity

[1] is the multiplicative identity

For $\alpha \in \mathbb{Z}_n$, we call $\beta \in \mathbb{Z}_n$ a multiplicative inverse of α if $\alpha\beta = [1]$

\mathbb{Z}_n^* := the set of residue classes that have a multiplicative inverses

Facts: $\bullet \mathbb{Z}_n^*$ closed under multiplication
$\bullet \alpha = [a] \in \mathbb{Z}_n^* \iff \gcd(a, n) = 1$
\bullet if p is prime, then $\mathbb{Z}_p^* = \{\alpha \in \mathbb{Z}_p : \alpha \neq [0]\}$
Example: $n = 15$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>α^{-1}</td>
<td>[1]</td>
<td>[8]</td>
<td>[4]</td>
<td>[13]</td>
<td>[2]</td>
<td>[11]</td>
<td>[7]</td>
<td>[14]</td>
</tr>
</tbody>
</table>

Alternative approach to defining \mathbb{Z}_n

Define it as the set of n “symbols” $[0], [1], \ldots, [n - 1]$

Addition and multiplication defined directly:

\[
[a] + [b] := [(a + b) \mod n]
\]

\[
[a] \cdot [b] := [(a \cdot b) \mod n]
\]
Fermat’s Little Theorem

Let \(\alpha \in \mathbb{Z}_n^* \)

Consider the sequence of powers of \(\alpha \):

\[
1 = \alpha^0, \alpha^1, \alpha^2, \ldots
\]

Sequence must repeat: let \(k \) be the smallest positive integer such that \(\alpha^k = \alpha_i \) for some \(i < k \)

Claim: \(\alpha^k = 1 \)

- If \(\alpha^k = \alpha^i \) for \(i > 0 \), cancel \(\alpha \), obtaining \(\alpha^{k-1} = \alpha^{i-1} \), contradicting minimality of \(k \)

This value \(k \) is called the \textbf{(multiplicative) order of} \(\alpha \)
Facts:

- Order of $\alpha \in \mathbb{Z}_n^*$ is the smallest positive integer k such that $\alpha^k = 1$
- The elements $\alpha^0, \ldots, \alpha^{k-1}$ are distinct
- The sequence $\alpha^0, \alpha^1, \alpha^2, \ldots$ just repeats this pattern of k distinct elements over and over

Example: $n = 7$

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>order</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1^i \mod 7$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$2^i \mod 7$</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>$3^i \mod 7$</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>$4^i \mod 7$</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>$5^i \mod 7$</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>$6^i \mod 7$</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Fermat’s Little Theorem: Let p be a prime and let $\alpha \in \mathbb{Z}_p^*$. Then $\alpha^{p-1} = 1$. In particular, the order of α divides $p - 1$

Proof: Consider the “multiplication by α” map:

$$\tau_\alpha : \mathbb{Z}_p^* \to \mathbb{Z}_p^*

\beta \to \alpha \beta.$$

Easy to see that τ_α is a bijection

So, as β ranges over the set \mathbb{Z}_p^*, so does $\alpha \beta$

Therefore

$$\prod_{\beta \in \mathbb{Z}_p^*} \beta = \prod_{\beta \in \mathbb{Z}_p^*} (\alpha \beta) = \alpha^{p-1} \left(\prod_{\beta \in \mathbb{Z}_p^*} \beta \right)$$

Now cancel $\prod_{\beta \in \mathbb{Z}_p^*} \beta$ from both sides: $1 = \alpha^{p-1}$
Equivalent formulations of the theorem

If \(p \) is prime, then

\[
\alpha^p = \alpha \quad \text{for all } \alpha \in \mathbb{Z}_p
\]

If \(p \) is prime, then

\[
\alpha^p \equiv a \pmod{p} \quad \text{for all } \alpha \in \mathbb{Z}
\]

Application: primality testing

To test if \(n \) is prime, check if \(\alpha^{n-1} = 1 \) for several non-zero values \(\alpha \in \mathbb{Z}_n \)

If some check fails, then \(n \) is definitely not prime

If all checks succeed, test is inconclusive

This test is not “fool proof”, but it can be strengthened a bit to make it so
Computing large powers in \mathbb{Z}_n

Given $\alpha \in \mathbb{Z}_n$ and $e \geq 0$, compute $\beta := \alpha^e \in \mathbb{Z}_n$

Naive algorithm:

$$\beta \leftarrow [1]_n \in \mathbb{Z}_n$$

repeat e times

$$\beta \leftarrow \beta \cdot \alpha$$

Takes e multiplications in \mathbb{Z}_n

Repeated squaring: $O(\log e)$ multiplications in \mathbb{Z}_n

Warmup: suppose $e = 2^k$

$$\beta \leftarrow \alpha$$

repeat k times

$$\beta \leftarrow \beta^2$$
Repeated Squaring algorithm

Binary representation: $e = (b_1 \cdots b_k)_2$

Computation:

$$\beta \leftarrow [1]_n \in \mathbb{Z}_n$$

for i in $[1..k]$ do

$$\beta \leftarrow \beta^2$$

if $b_i = 1$ then $\beta \leftarrow \beta \cdot \alpha$

Claim: after the ith loop iteration, we have $\beta = \alpha^{e_i}$, where $e_i = (b_1 \cdots b_i)_2$

Observe that $e_i = 2e_{i-1} + b_i$, and therefore,

$$\alpha^{e_i} = \alpha^{2e_{i-1} + b_i} = (\alpha^{e_{i-1}})^2 \cdot \alpha^{b_i}.$$
Example: $e = 37 = (100101)_2$

\[
\begin{align*}
\beta &\leftarrow [1] & &// 0 \\
\beta &\leftarrow \beta^2, \beta \leftarrow \beta \cdot \alpha & &// 1 \\
\beta &\leftarrow \beta^2 & &// 10 \\
\beta &\leftarrow \beta^2 & &// 100 \\
\beta &\leftarrow \beta^2, \beta \leftarrow \beta \cdot \alpha & &// 1001 \\
\beta &\leftarrow \beta^2 & &// 10010 \\
\beta &\leftarrow \beta^2, \beta \leftarrow \beta \cdot \alpha & &// 100101
\end{align*}
\]
Primitive roots

Example: \(n = 7 \)

<table>
<thead>
<tr>
<th>(i)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>order</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1^{i} \mod 7)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(2^{i} \mod 7)</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>(3^{i} \mod 7)</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>(4^{i} \mod 7)</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>(5^{i} \mod 7)</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>(6^{i} \mod 7)</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Fact: for every prime \(p \), there exists an element in \(\mathbb{Z}_p^* \) of order \(p - 1 \)

- Proof: later

Such an element is called a primitive root mod \(p \)

- Example: [3] and [5] are primitive roots mod 7

If \(\alpha \in \mathbb{Z}_p^* \) is a primitive root, then every \(\beta \in \mathbb{Z}_p^* \) can be expressed as a power of \(\alpha \)