Hashing (4)
Cuckoo Hashing
Cuckoo Hashing

A simple scheme for resolving collisions in a hash table

Guaranteed constant time lookup

Expected constant time insertion

Requires stronger assumption for hash functions

We will work with Uniform Hashing Assumption

We will present a simplified version of the scheme, and a simplified analysis
We have a table \(T[0..m) \) of \(m \) slots.

Each slot is either \textit{null} or contains a single key.

Keys are hashed using two hash functions: \(h_1, h_2 : \mathcal{U} \rightarrow [0..m) \).

We model each hash function as a \textit{truly random function} from \(\mathcal{U} \) to \([0..m) \).

Any key \(a \in \mathcal{U} \) resides in one of two slots: either \(h_1(a) \) or \(h_2(a) \).

Lookup procedure:
- test if \(T[h_1(a)] = a \) or \(T[h_2(a)] = a \)

\(\implies \text{guaranteed constant time lookup} \)
Procedure to insert a new key a

let $n = \#\text{ keys already in the table}$

if $T[h_1(a)] = a$ or $T[h_2(a)] = a$ then
 return success // already in table

pos ← $h_1(a)$
nswaps ← 0

while $T[pos] \neq \text{null}$ and $nswaps < n$ do
 swap a and $T[pos]$
 pos ← $h_1(a) + h_2(a) - pos$
 // a’s alternate position
 nswaps ← nswaps + 1

if $T[pos] = \text{null}$ then
 $T[pos] ← a$
 return success
else
 return failure // need to rehash
The *cuckoo graph*:

Each slot is a vertex

Each key \(a \) adds a random edge \(e = \{ h_1(a), h_2(a) \} \) to the graph

- undirected graph
- possibly a *multi-graph* — repeated edges
Insert Z at position 0: bump A to 3: bump B to 8 (no cycle, no problem)
Insert Z at position 7 (alternate 1): bump W to 4: bump H to 7, bump Z to 1, bump C to 2 (a cycle, but still OK)
Insert Z at position 7 (alternate 4): bump W to 4: bump H to 7, bump Z to 4, ... (a cycle, not OK)
Only two slots for three keys… **Failure!**
Lessons learned:

• If a new key is inserted at slot s, and there is no cycle in the graph reachable from s, then insertion will succeed

• In particular: if there are no cycles, insertion will succeed

• Even if there are cycles, insertion may succeed:
 ◦ The exact characterization of failure is a bit more complicated
Analyzing the probability of insertion failure

We will show that if $\alpha := n/m$ (the “load factor”) is at most 1/4, then the probability that inserting n items into a table with m slots ends in failure is at most $3/4$.

How? Compute bound on probability p of a cycle in a multi-graph with m vertices (slots) and n random edges (keys) e_1, \ldots, e_n.

Strategy: for each $k = 1, 2, 3, \ldots$, estimate probability p_k that graph contains a simple cycle of length k.

Union bound: $p \leq \sum_{k \geq 1} p_k$.

NOTE: a more careful analysis shows failure probability is much smaller: $O(1/m)$.
Typical case: $p_3 :=$ probability of a 3-cycle:

\[
\begin{array}{c}
\text{s}_0 \\
\text{s}_1 \\
\text{s}_2
\end{array}
\begin{array}{c}
\text{e}_{i_1} \\
\text{e}_{i_2} \\
\text{e}_{i_3}
\end{array}
\]

$\leq m^3$ ways to pick s_0, s_1, s_2, but we count the same cycle 3 times

∴ # of “potential” 3-cycles: $\leq m^3/3$

For a fixed potential cycle, and for any three random edges $e_{i_1}, e_{i_2}, e_{i_3}$, probability that

$(e_{i_1}, e_{i_2}, e_{i_3}) = (\{s_0, s_1\}, \{s_1, s_2\}, \{s_2, s_0\})$,

“filling” the cycle, is $(2/m^2)^3$

of triples $i_1, i_2, i_3: \leq n^3$

∴ $p_3 \leq (m^3)/3 \times (2/m^2)^3 \times n^3 = (2n/m)^3/3$
The general case (exercise):

\[p_k \leq \frac{(2\alpha)^k}{k}, \quad \text{where } \alpha := \frac{n}{m} \]

Therefore,

\[p \leq \sum_{k \geq 1} p_k \leq \sum_{k=1}^{\infty} \frac{(2\alpha)^k}{k} = \ln \left(\frac{1}{1 - 2\alpha} \right) \]

Graph of \(y = \ln(1/(1 - x)) \):

\[x \leq 1/2 \implies \ln(1/(1 - x)) \leq 3/4 \]

Implication: \(\alpha \leq 1/4 \implies \text{failure probability} \leq 3/4 \)
Building a cuckoo hash table

Suppose we attempt to insert n distinct keys a_1, \ldots, a_n items into an empty hash table, and stop when an insertion fails.

For $r = 1 \ldots n$, let X_r be the number of swaps performed when we attempt to insert a_r.

Note: $X_r = 0$ if the insertion procedure fails on one of a_1, \ldots, a_{r-1}.

Assume that $\alpha := n/m \leq 1/4$.

Claim: $E[X_r] \leq 3/2$

It follows that

- Expected cost of attempting to insert n keys: $O(n)$
- Probability that such an attempt succeeds: $\geq 1/4$
- Expected number of attempts until success: ≤ 4
- Expected cost of building a table: $O(n)$
Claim: $E[X_r] \leq 3/2$

Proof:

Suppose the $h_1(a_r) = s_0$ and consider the cuckoo graph corresponding to items a_1, \ldots, a_{r-1}

Tail sum formula:

$$E[X_r] = \sum_{k=1}^{n} \Pr[X_r \geq k]$$

If $X_r \geq k$, then in the cuckoo graph: **either**

(i) there is a *simple path* of length k starting at s_0:

$$s_0 \rightarrow s_1 \rightarrow \cdots \rightarrow s_k,$$

or

(ii) there is a *simple loop* starting at s_0:

$$s_0 \rightarrow \cdots \rightarrow s_{\ell-1} \rightarrow s_j \quad (j < \ell)$$
Let’s estimate the probability q_k that there is a simple path of length k starting at s_0:

$$s_0 \to s_1 \to \cdots \to s_k$$

of choices for s_1, \ldots, s_k: $\leq m^k$

Probability that

$$(e_{i_1}, \ldots, e_{i_k}) = (\{s_0, s_1\}, \ldots, \{s_{k-1}, s_k\})$$

is $(2/m^2)^k$

of tuples i_1, \ldots, i_k: $\leq n^k$

Therefore,

$$q_k \leq m^k \times (2/m^2)^k \times n^k = (2n/m)^k = (2\alpha)^k$$

$\leq 2^{-k}$ \quad (since $\alpha \leq 1/4$)
Let’s estimate the probability \tilde{q}_ℓ that there is a simple loop of length ℓ starting at s_0

$$s_0 \to \cdots \to s_{\ell-1} \to s_j \quad (j < \ell)$$

Homework:

$$\tilde{q}_\ell \leq \frac{\ell(2\alpha)^\ell}{m}$$

Let $\tilde{q} :=$ probability of any simple loop starting at s_0:

$$\tilde{q} \leq \sum_{\ell \geq 1} \tilde{q}_\ell \leq \frac{1}{m} \sum_{\ell=1}^{\infty} \ell(2\alpha)^\ell = \frac{1}{m} \cdot \frac{2\alpha}{(1 - 2\alpha)^2} \leq \frac{2}{m} \quad \text{(since } \alpha \leq 1/4)$$
Putting it all together:

\[E[X_r] = \sum_{k=1}^{n} \Pr[X_r \geq k] \leq \sum_{k=1}^{n} (2^{-k} + \frac{2}{m}) \]

\[\leq 1 + \frac{2n}{m} = \frac{3}{2} \]