Hashing (3)
Perfect Hashing

We have n fixed keys a_1, \ldots, a_n

We want to be able to build a table with these keys, so that lookups take constant time — in the worst case

Basic strategy: universal hashing

$m = \# \text{ slots}$

We don’t want any collisions
Union bound:

\[
Pr[\text{collision}] \leq \sum_{i=1}^{n} \sum_{j=1}^{i-1} Pr[h_{R}(a_i) = h_{R}(a_j)] \\
\leq n(n-1) \\
\leq \frac{n(n-1)}{2m}
\]

Assume \(m \geq n(n-1) \), so that we get a collision with probability \(\leq 1/2 \)

Strategy:

repeat
 choose a random hash function
 hash \(a_1, \ldots, a_n \) using this hash function
 until no collisions
Good news: each iteration succeeds with probability \(\geq 1/2 \)

\[\therefore \text{expected # of iterations} \leq 2 \]

Bad news: HUGE table (mostly empty)

A better approach: two levels of universal hashing

- Level 1 segregates keys so that not too many go into any one slot
- Level 2 applies the basic strategy to each Level-1 slot
Suppose there are \(m \geq 2n \) Level-1 slots

Step 1:

repeat
 choose a random hash function hash \(a_1, \ldots, a_n \) using this function
 let \(L_s := \# \text{ keys in slot } s \)
 let \(V' := \sum_s L_s(L_s - 1) = \sum_s L_s^2 - n \)
until \(V' \leq n \)

Step 2:

For each Level-1 slot \(s \), use Basic Strategy to hash all keys in slot \(s \) into a hash table with (at least) \(L_s(L_s - 1) \) slots
Analysis

Tool: Markov’s inequality

let X be a random variable taking non-negative values

let $\mu := E[X]$

For all $t > 0$: $Pr[X \geq t] \leq \mu/t$

Set $t = 2\mu$: $Pr[X \geq 2\mu] \leq 1/2$

Step 1:

Previous lecture (Hashing (1)): $E[V'] \leq n^2/m \leq n/2$

Markov says: $Pr[V' \geq n] \leq 1/2$

\therefore expected # of iterations ≤ 2
Analysis (cont’d)

Step 2:

For each slot s, we build a sub-table with (at least) $L_s(L_s - 1)$ slots

\therefore we can quickly find a good hash function for this sub-table

Summary:

- Total expected running time $= O(n)$
- Total size of data structure $= O(n)$
Another hash application: fast pattern matching

Problem: Given strings $a = a_1 \cdots a_n$, and $b = b_1 \cdots b_t$, test if b is a substring of a

Naive algorithm: time $O(nt)$

Faster algorithms: time $O(n)$ (assume $t \leq n$)
 - A simple, randomized algorithm (Karp, Rabin)
 - A trickier deterministic algorithm (Knuth, Morris, Pratt)
The Karp/Rabin Algorithm

Let \(\{h_{\lambda}\}_{\lambda \in \Lambda} \) be an \(\varepsilon \)-universal family of hash functions on strings of length \(t \)

Algorithm:

choose a random hash function index \(\lambda \)

\(s \leftarrow h_{\lambda}(b) \)

for \(i \leftarrow 1 \) to \(n - t + 1 \) do

\(s_i \leftarrow h_{\lambda}(a_i \cdots a_{i+t-1}) \)

if \(s = s_i \) then

if \(b = a_i \cdots a_{i+t-1} \) then

return “match”

return “no match”
Running time analysis: two factors

- time to compute hash function
- expected time spent processing “false positives”: $O(\varepsilon \cdot n \cdot t)$

Use “polynomial evaluation” hash:

- view a_i’s, b_j’s, λ as elements of \mathbb{Z}_m, where m is prime
- $h_\lambda(a_1 \cdots a_t) = a_1 \lambda^{t-1} + \cdots + a_{t-1} \lambda + a_t$
- $\varepsilon < t/m$
- time to evaluate each h_λ: $O(t)$ naively, but we can do better
Horner’s rule for polynomial evaluation

Given a polynomial \(f = a_1x^{t-1} + \cdots + xa_{t-1} + a_t \) and a value \(\lambda \), compute the value \(f(\lambda) \):

\[
\text{acc} \leftarrow a_1 \\
\text{for } i \text{ in } [2..t] \text{ do} \\
\quad \text{acc} \leftarrow \text{acc} \cdot \lambda + a_i
\]

How it works:

\[
\begin{align*}
\text{acc} &= a_1 \\
\text{acc} &= a_1 \lambda + a_2 \\
\text{acc} &= a_1 \lambda^2 + a_2 \lambda + a_3 \\
\text{acc} &= a_1 \lambda^3 + a_2 \lambda^2 + a_3 \lambda + a_4 \\
\end{align*}
\]
Computing a “Rolling Hash”

\[a_1 \lambda^{t-1} + a_2 \lambda^{t-2} + \cdots + a_t \]

\[-a_1 \lambda^{t-1} \]

\[\hline \]

\[a_2 \lambda^{t-2} + \cdots + a_t \]

\[] \times \lambda \]

\[\hline \]

\[a_2 \lambda^{t-1} + \cdots + a_t \lambda \]

\[+ a_{t+1} \]

\[\hline \]

\[a_2 \lambda^{t-1} + \cdots + a_t \lambda + a_{t+1} \]
Karp/Rabin: conclusions

Assume m is near machine word size (e.g., 2^{64})

Assume arithmetic in \mathbb{Z}_m takes time $O(1)$

Time to compute hashes: $O(n)$

Expected time to process false positives: $O(nt^2/m)$, which is $O(n)$ for “reasonable” t (e.g., $t < 2^{32}$)

Karp/Rabin: not the fastest, but for multi-pattern matching, it is very good

Can be adapted to 2D matching (exercise)
Beyond Pairwise independence: Uniform Hashing Assumption

Let $\mathcal{H} = \{ h_\lambda \}_{\lambda \in \Lambda}$ be a family of hash functions from \mathcal{U} to \mathcal{V}

Let R be uniformly distributed over Λ

Uniform Hashing Assumption:

The random variables $h_R(a)$ for $a \in \mathcal{U}$ are mutually independent, with each $h_R(a)$ uniformly distributed over \mathcal{V}
A very strong assumption

Hard to achieve in practice

Often the assumption is just heuristically applied

“off the shelf” cryptographic functions
The Max Load — Revisited

Suppose we hash n keys into n slots

Let $M = \text{max \# of keys that hash to any one slot}$

Theorem. Under the Uniform Hashing Assumption,

$$E[M] = O\left(\frac{\log n}{\log \log n}\right).$$

Note: compare to $O(\sqrt{n})$ for pairwise independent hashing

“Balls and bins” interpretation: if you throw n balls into n bins, the expected value of the max number of balls in any bin is $O(\log n/\log \log n)$
Recall tail sum formula:

If X be a random variable that takes only non-negative integer values, then

$$E[X] = \sum_{j \geq 1} \Pr[X \geq j]$$

Proof of Theorem.

Claim 1: for $j = 1, \ldots, n$: $\Pr[M \geq j] \leq n/j!$

Proof: We are hashing n keys

$M \geq j \iff$ some subset of j keys hash to same slot

For any fixed subset of j keys, this happens with probability $1/n^{j-1}$:

- the first key can hash into any slot
- the other $j-1$ must hash into the same slot
Apply Union Bound, sum over all subsets of size j:

$$\Pr[M \geq j] \leq \binom{n}{j} \cdot \frac{1}{n^{j-1}}$$

$$= \frac{n(n-1)\cdots(n-j+1)}{j!} \cdot \frac{1}{n^{j-1}}$$

$$\leq \frac{n}{j!}$$

That proves the claim
Define $f(n) := \text{least } j \text{ such that } j! \geq n$
["inverse factorial" function]

Claim 2: $f(n) = O(\log n / \log \log n)$

Proof: we want $j! \geq n$, or equivalently, $\ln(j!) \geq \ln(n)$

We know

$$\ln(j!) = \sum_{i=1}^{j} \ln(i) = j \ln(j) + O(j) \geq \frac{1}{2} j \ln(j)$$

for sufficiently large j

Suppose $j \geq 4 \ln(n) / \ln(\ln(n))$

For n sufficiently large:

- $\ln(j) \geq \ln(\ln(n))/2$
- $j \ln(j) \geq 2 \ln(n)$
- $\ln(j!) \geq \frac{1}{2} j \ln(j) \geq \ln(n)$
Finishing the proof . . .

If \(j_0 := f(n) \), we have

\[
E[M] = \sum_{j \geq 1} \Pr[M \geq j]
\]

\[
= \sum_{j=1}^{j_0-1} \Pr[M \geq j] + \sum_{j=j_0}^{\infty} \Pr[M \geq j]
\]

- each term \(\leq 1 \)
- each term \(\leq n/j! \)

\[
\leq \sum_{j=1}^{j_0-1} 1 + \sum_{j=j_0}^{\infty} \frac{n}{j!} = j_0 + \frac{n}{j_0!} \sum_{j=j_0}^{\infty} \frac{j_0!}{j!}
\]

\[
\leq (j_0 - 1) + (1 + 1/2 + 1/4 + 1/8 + \cdots) = j_0 + 1 = O(\log n / \log \log n)
\]

QED