Hashing (1)
The general setup:

- \mathcal{U} – (large, finite) universe of possible **keys**
- \mathcal{V} – (small) set of **slots** of size m

 typically $\mathcal{V} = [0..m)$
- $h : \mathcal{U} \rightarrow \mathcal{V}$ – a “hash function” from \mathcal{U} to \mathcal{V}

 maps keys to slots
- $T[\mathcal{V}]$ – a “hash table” for storing keys, indexed by \mathcal{V}

Implementing a dictionary:

- A key $a \in \mathcal{U}$ is stored in the hash table T at slot $s = h(a)$
- As long as no two keys hash to the same slot (a “collision”), we can perform all dictionary operations ($insert$, $search$, $delete$) in **constant time**
Resolving collisions by chaining
Dictionary Operations:

- \textit{insert}(a): insert \textit{a} in the linked list \(T[h(a)] \)
- \textit{search}(a): search for \textit{a} in \(T[h(a)] \)
- \textit{delete}(a): search for and delete \textit{a} in \(T[h(a)] \)

Running times:

- insert – \(O(1) \)
- search, delete – \(O(n) \) (worst case)

Worst case occurs when all keys hash to the same slot

Better: choose a \textit{random} hash function

hopefully — no “pile ups”
Universal Hashing [Carter & Wegman, 1975]

- \(\Lambda \) – a finite, non-empty set of hash function indices
- \(\mathcal{H} = \{h_\lambda\}_{\lambda \in \Lambda} \) – a family of hash functions from \(\mathcal{U} \) to \(\mathcal{V} \), indexed by \(\lambda \in \Lambda \)
- \(m := |\mathcal{V}| \)

Def’n: \(\mathcal{H} \) is called **universal** if for all \(a, b \in \mathcal{U} \) with \(a \neq b \),

\[
\left| \{ \lambda \in \Lambda : h_\lambda(a) = h_\lambda(b) \} \right| \leq \frac{|\Lambda|}{m}.
\]

Probabilistic interpretation: if \(R \) is a random variable, uniformly distributed over \(\Lambda \), then

\[
\Pr[h_R(a) = h_R(b)] \leq \frac{1}{m}.
\]
Using Universal Hash Functions

Assume distinct keys a_1, \ldots, a_n are stored in table
Let $\alpha := n/m =$ “load factor”
Assume R is uniformly distributed over Λ
For $i = 1, \ldots, n$, define
$$S_i := \# \text{ of keys in slot } h_R(a_i)$$
That is, S_i is the number of keys in the slot occupied by a_i
The values R, S_1, \ldots, S_n are random variables.
For each $i = 1, \ldots, n$, we wish to bound $E[S_i]$.
Claim: \(E[S_i] \leq \alpha + 1 \) for each \(i = 1, \ldots, n \).

Proof: for \(i, j = 1, \ldots, n \), define indicator variables

\[
C_{ij} := \begin{cases}
1 & \text{if } h_R(a_i) = h_R(a_j) \\
0 & \text{otherwise}
\end{cases}
\]

For all \(i, j \):

\[
E[C_{ij}] = \Pr[h_R(a_i) = h_R(a_j)] \leq \frac{1}{m} \quad \text{if } i \neq j \\
= 1 \quad \text{if } i = j
\]

Write \(S_i \) as sum of indicator variables: \(S_i = \sum_{j=1}^{n} C_{ij} \)

By linearity of expectation:

\[
E[S_i] = \sum_{j=1}^{n} E[C_{ij}] = E[C_{ii}] + \sum_{j \neq i} E[C_{ij}]
\]

\[
\leq 1 + (n-1)/m \\
\leq \alpha + 1 \quad \text{QED}
\]
interpretation:

- for each i, the expected number of keys in a_i’s slot (including a_i itself) is $\leq \alpha + 1$

- the expected time to perform a single dictionary operation is $O(\alpha + 1)$

- by linearity of expectation, expected time to perform k dictionary operations is $O(k(\alpha + 1))$

special case: $\alpha = O(1)$ (i.e., $n = O(m)$)

- expected time per operation is $O(1)$
Maximum Load: another performance measure

Suppose hash table contains keys a_1, \ldots, a_n, and that R is uniform over Λ

For $s \in \mathcal{V}$, define

$$L_s := \# \text{ of } a_i \text{'s that hash to slot } s \text{ under } h_R$$

Set $M := \max \{ L_s : s \in \mathcal{V} \}$

We want to bound $E[M]$, assuming universal hashing

Jensen says: $E[M]^2 \leq E[M^2]$

Observe: $M^2 \leq V := \sum_{s \in \mathcal{V}} L_s^2$

Claim: $E[V] \leq n^2/m + n$
Proof of claim: Define indicator variables

\[I_{i,s} := \begin{cases} 1 & \text{if } h_R(a_i) = s \\ 0 & \text{otherwise} \end{cases} \]

We have

\[V = \sum_{s \in \mathcal{V}} L_s^2 = \sum_{s \in \mathcal{V}} (\sum_{i=1}^{n} I_{i,s})^2 \]
\[= \sum_{s} (\sum_{i} I_{i,s})(\sum_{j} I_{j,s}) \]
\[= \sum_{i,j} \sum_{s} I_{i,s}I_{j,s} = \sum_{i,j} C_{ij} \]
So we have

\[V = \sum_{i,j} C_{ij} \]

and by linearity of expectation, we have

\[E[V] = \sum_{i,j} E[C_{ij}] \]

\[= \sum_i E[C_{ii}] + \sum_{i \neq j} E[C_{ij}] \]

\[\leq n + n(n - 1)/m \]

\[\leq n^2/m + n \]

QED
Corollary: \(\mathbb{E}[M] \leq \sqrt{n^2/m + n} \)

Special case: \(\alpha = O(1) \)

\[
\mathbb{E}[M] = O(\sqrt{n})
\]

- This bound is tight
- Counter-intuitive: it may be the case that \(\mathbb{E}[L_s] = O(1) \) for each slot \(s \)

Again: expected value of max may be much larger than max of expected values