Shortest paths in a DAG

Let $G = (V, E)$ be a DAG with edge weights $\text{wt} : E \rightarrow \mathbb{R}$ (edge weights may be negative)

Linear time (i.e., $O(|V| + |E|)$) algorithm for Single Destination variant (reverse G for Single Source variant)

Given G as above and $t \in V$, find shortest paths from all nodes $v \in V$ to t

Assume $V = [0..n)$ and let $\text{TopSort}[0..n)$ be an array that lists vertices in a topological order

if $u \rightarrow v$ is an edge, then u appears before v in the TopSort array
We will compute \(d[\nu] = \text{weight of shortest path from } \nu \text{ to } t \) for all \(\nu \in V \)

for \(i \) in reverse [\(0..n \)]

\[u \leftarrow \text{TopSort}[i] \]

if \(u = t \) then

\[d[u] \leftarrow 0 \]

else

\[d[u] \leftarrow \min \left[\{ \text{wt}(u, \nu) + d[\nu] : \nu \in \text{Successor}(u) \} \right. \]

\[\cup \{\infty\} \]

A more concrete implementation of “\(d[u] \leftarrow \min \cdots \)”

\[d[u] \leftarrow \infty \]

for each \(\nu \in \text{Successor}(u) \) do

if \(\text{wt}(u, \nu) + d[\nu] < d[u] \) then

\[d[u] \leftarrow \text{wt}(u, \nu) + d[\nu] \]
Breadth first search (BFS)

Input: a graph $G = (V, E)$, and a node $s \in V$

- The graph is *unweighted*
- Equivalently, all edges have weight 1

Outputs:

- the “shortest distance” array d, indexed by V, so that $d[\nu] =$ length of shortest path from s to ν
- a “breadth first search” tree T, represented as an array π indexed by V

$\pi[\nu] = u$ means u is ν’s parent in T

the root T is s, and paths in T are shortest paths in G
Algorithm $BFS(G, s)$:

for each $v \in V$

\[
\begin{align*}
\text{Color}[v] &\leftarrow \text{white} \quad // \text{undiscovered} \\
 d[v] &\leftarrow \infty, \pi[v] \leftarrow \text{Nil}
\end{align*}
\]

$\text{Color}[s] \leftarrow \text{gray} \quad // \text{discovered}$

$d[s] \leftarrow 0, \pi[s] \leftarrow \text{Nil}$

$Q \leftarrow \text{NewQueue()} \quad // \text{a FIFO queue}$

$Q.$enqueue(s)

while not $Q.$empty() do

$u \leftarrow Q.$dequeue()

for each $v \in \text{Successor}(u)$ do

if $\text{Color}[v] = \text{white}$ then

\[
\begin{align*}
\text{Color}[v] &\leftarrow \text{gray} \quad // \text{discovered} \\
 d[v] &\leftarrow d[u] + 1, \pi[v] \leftarrow u \\
 Q.$enqueue($v$)
\end{align*}
\]

$\text{Color}[u] \leftarrow \text{black} \quad // \text{finished}$
Example:

BFS Tree:
Running time:

- Each node enqueued at most once (by coloring)
- Each node dequeued at most
- Each adjacency list scanned at most once
- \[\therefore \text{Running time} = O(|V| + |E|) \]

Invariant:

- At the beginning of each loop iteration, \(Q \) contains all nodes that are colored \textit{gray}.
Correctness

Notation: \(d[\nu] = \) computed distance
\(\delta(s, \nu) = \) length of shortest path from \(s\) to \(\nu\)

Shortest Path Lemma

If \(\delta(s, \nu) = m > 0\), then \(\nu\) is the successor of some node \(u\) with \(\delta(s, u) = m - 1\)

Proof:

- Consider a shortest path from \(s\) to \(\nu\):
 \[
 \begin{align*}
 s & \rightarrow u \rightarrow \nu \\
 m-1 & \\
 m
 \end{align*}
 \]

- The path \(s \rightarrow u\) must be a shortest path from \(s\) to \(u\) (otherwise, we could find an even shorter path to \(\nu\)). QED
Theorem
Algorithm BFS eventually discovers every node reachable from \(s \)

Prove by induction on \(m \):

\[
\text{for all } v \in V, \text{ if } \delta(s, v) = m, \text{ then BFS discovers } v
\]

\(m = 0 \): clear; \(m > 0 \):

- Suppose \(v \in V \) with \(\delta(s, v) = m \)
- By Shortest Path Lemma, \(v \) has a predecessor \(u \) with \(\delta(s, u) = m - 1 \)
- By induction, BFS discovered \(u \), and placed \(u \) in \(Q \)
- When BFS removes \(u \) from \(Q \), it discovers \(v \) (or finds that it was already discovered)
Theorem

BFS correctly computes $d[\nu] = \delta(s, \nu)$ for all $\nu \in V$

Proof:

- Let ν_0, ν_1, \ldots be the nodes listed in the order they are removed from Q.

- We can partition the execution of BFS into *epochs* $0, 1, 2, \ldots$

 - $\nu_0, \ldots, \nu_{j_0}, \nu_{j_0+1}, \ldots, \nu_{j_1}, \ldots$
 - epoch 0
 - epoch 1

- A new epoch starts at ν_j if $\delta(s, \nu_j) \neq \delta(s, \nu_{j-1})$.
Prove by induction on i:

At the beginning of epoch i, Q contains precisely all nodes v such that $\delta(s, v) = i$, and $d[v] = i$ for all these nodes

$i = 0$: clear

Assume for $0, \ldots, i$ and prove for $i + 1$:

- By induction hypothesis, at beginning of epoch i, Q contains precisely all nodes v such that $\delta(s, v) = i$, and $d[v] = i$ for all these nodes
- Moreover, all nodes v with $\delta(s, v) = i + 1$ are as yet undiscovered
- By Shortest Path Lemma, all nodes v with $\delta(s, v) = i + 1$ will be discovered and placed at end of Q during epoch i
- Epoch i ends when all nodes v with $\delta(s, v) = i$ have been removed from Q

QED. One can also easily show that T is correct
Recap: Single source / destinations shortest paths

Assume $G = (V, E)$, with $n := |V|$ and $m := |E|$

- No negative edges: $O((n + m) \log n)$ — Dijkstra
- Bounded, non-negative, integer edge weights: $O(n + m)$ — Dijkstra variant (or BFS)
- DAG with arbitrary edge weights: $O(n + m)$
All pairs shortest paths

One approach:

- Run a single-source shortest path algorithm from each vertex
 - Dijkstra (no negative edges): $O(n \times (n + m) \log n)$, or $O(n^3)$

Floyd-Warshall Algorithm:

- no negative cycles
- running time $O(n^3)$
• Number the vertices \([1 \ldots n]\)

• For a path \(p = \langle v_0, v_1, \ldots, v_{\ell-1}, v_\ell \rangle\), we say that \(v_1, \ldots, v_{\ell-1}\) are intermediate vertices.

• For \(k\) in \([0 \ldots n]\), let \(\delta^{(k)}(i, j) := \) length of the shortest path from \(i\) to \(j\) whose intermediate vertices belong to \([1 \ldots k]\).

\[
\delta^{(0)}(i, j) = \begin{cases}
0 & \text{if } i = j; \\
\text{wt}(i, j) & \text{if } i \neq j \text{ and } (i, j) \in E \\
\infty & \text{otherwise}
\end{cases}
\]

• For \(k > 0\)

\[
\delta^{(k)}(i, j) = \min \left(\delta^{(k-1)}(i, j), \\
\delta^{(k-1)}(i, k) + \delta^{(k-1)}(k, j) \right)
\]
Straightforward implementation:

- Use a 3D array $D[i, j, k]$

 $D[i, j, 0] \leftarrow \delta^{(0)}(i, j)$ for i, j in $[0..n)$

 for k in $[1..n]$ do

 for i in $[1..n]$ do

 for j in $[1..n]$ do

 $d' \leftarrow D[i, k, k - 1] + D[k, j, k - 1]$

 if $d' < D[i, j, k - 1]$

 then $D[i, j, k] \leftarrow d'$

 else $D[i, j, k] \leftarrow D[i, j, k - 1]$

- Running time: $O(n^3)$

- Space: $O(n^3)$
Improving the space requirement:

- Since $D[\cdot, \cdot, k]$ depends only on $D[\cdot, \cdot, k-1]$, we can obviously get by with just two 2D arrays.

- In fact, we can get by with just a single array, with updates “in place”.

 Justification:

 - $\delta^{(k)}(i, k) = \delta^{(k-1)}(i, k)$
 - $\delta^{(k)}(k, j) = \delta^{(k-1)}(k, j)$

- Why? No negative cycles.

- So in the formula:

 $$\delta^{(k)}(i, j) = \min(\delta^{(k-1)}(i, j), \underbrace{\delta^{(k-1)}(i, k) + \delta^{(k-1)}(k, j)}_{\text{these don’t change in loop iteration } k})$$
Improved implementation:

- Use a 2D array $D[i, j]$

\[
D[i, j] \leftarrow \delta^{(0)}(i, j) \text{ for } i, j \text{ in } [0..n)
\]

for k in $[1..n]$ do

for i in $[1..n]$ do

for j in $[1..n]$ do

\[
d' \leftarrow D[i, k] + D[k, j]
\]

if $d' < D[i, j]$

then \[
D[i, j] \leftarrow d'
\]
Adding path recovery:

- Two arrays: \(D[i, j] \), \(N[i, j] \)
- \(N[i, j] \) = next vertex in the shortest path from \(i \) to \(j \)

\[
D[i, j] \leftarrow \delta^{(0)}(i, j) \text{ for } i, j \text{ in } [0..n)
\]

\[
N[i, j] \leftarrow j \text{ for } i, j \text{ in } [0..n)
\]

for \(k \) in \([1..n]\) do

for \(i \) in \([1..n]\) do

for \(j \) in \([1..n]\) do

\(d' \leftarrow D[i, k] + D[k, j] \)

if \(d' < D[i, j] \) then

\(D[i, j] \leftarrow d' \)

\(N[i, j] \leftarrow N[i, k] \)

Printing a shortest path from \(u \) to \(v \):

\(x \leftarrow u \), print \(x \)

while \(x \neq v \) do: \(x \leftarrow N[x, v] \), print \(x \)