Divide and Conquer

A first example: Merge Sort

A generic recursive sorting algorithm

Input: a list \(L \)
Output: a sorted list

if \(|L| \leq 1 \) then // \(|L| \) means length of \(L \)
 return \(L \)
else
 split \(L \) into two nonempty sublists \(L_1 \) and \(L_2 \)
 recursively sort \(L_1 \) and \(L_2 \)
 return \(merge(L_1, L_2) \)
A linear time merge algorithm

\textit{merge}(L_1, L_2)
Input: sorted lists \(L_1 \) and \(L_2 \)
Output: a sorted list \(L \)

initialize \(L \) to empty list
while \(L_1 \) and \(L_2 \) are both non-empty do
 if \(\text{head}(L_1) \leq \text{head}(L_2) \) then
 move \(\text{head}(L_1) \) to tail of \(L \)
 else
 move \(\text{head}(L_2) \) to tail of \(L \)

while \(L_1 \) not empty do
 move \(\text{head}(L_1) \) to tail of \(L \)

while \(L_2 \) not empty do
 move \(\text{head}(L_2) \) to tail of \(L \)

Running time analysis:
each loop iteration moves an item to \(L \)
\[\Rightarrow \text{total number of loop iterations} \mid L_1 \mid + \mid L_2 \mid \]
An array implementation

Input: sorted arrays $A[0..m), B[0..n)$
Output: sorted array $C[0..m+n)$

$i \leftarrow 0$, $j \leftarrow 0$, $k \leftarrow 0$

while $i < m$ and $j < n$ do
 if $A[i] \leq B[j]$ then
 $C[k++] \leftarrow A[i++]$
 else
 $C[k++] \leftarrow B[j++]$

while $i < m$ do
 $C[k++] \leftarrow A[i++]$

while $j < n$ do
 $C[k++] \leftarrow B[j++]$
Back to our recursive sorting algorithm . . .

Let $n = |L|$

Total running time:

- the “local computation” time: $O(n)$, plus
- the time spent in the recursive calls

The total running time is determined by the strategy used to split L into two sublists

Unbalanced strategy: always split L into sublists of size $n - 1$ and 1

Total time is $O(T)$, where

$$T = n + (n - 1) + (n - 2) + \cdots + 1$$

$\Rightarrow O(n^2)$ running time (essentially insertion sort)
Balanced strategy: the Merge Sort Algorithm

Always split L into two sublists of (roughly) equal size

Running time analysis using a **recursion tree**:

- Every node in the tree corresponds to a single call
 - its children correspond to the recursive calls
- We associate with each node with the *subproblem size* and *local cost* of the corresponding call
- We add up all the local costs — usually level by level
Example: \(n = 8 \)

More generally, assume \(n = 2^k \)

At level \(j = 0, \ldots, k \):

- \(2^j \) nodes, each with local cost \(2^{k-j} \)
- Cost per level: \(2^k = n \)
- Total cost: \(n(k + 1) = O(n \log n) \)
More observations

Good news:

- Merge Sort is a *stable* sort: data items of equal value retain their relative positions

Bad news:

- The array implementation of Merge Sort is not an *in place*: $O(n)$ auxiliary space is needed
Divide and Conquer: a (somewhat) general theorem

The setup: a recursive algorithm that on inputs of size $n \geq n_0 > 1$, recursively solves

- $\leq a$ smaller sub-problems,
- each of size $\leq n/b + c$,
- with a “local” running time $\leq dn^e$

where n_0, a, b, c, d, e are constants

"\[T(n) \leq aT(n/b + c) + O(n^e) \]"

Simplification: assume $c = 0$

General case: exercise
Recursion tree analysis

At level 1, size \(\leq n/b \)

At level 2, size \(\leq n/b^2 \)

...

At level \(j \), size \(\leq n/b^j \)

At level \(j \), there are \(\leq a^j \) nodes

Set \(k := \lceil \log_b n \rceil \), so \(n \leq b^k < bn \)

No levels past level \(k \)

Let \(w = \) sum of costs at levels 0, \ldots, \(k \)

For each \(j = 0 \ldots k \), sum of costs at level \(j \) is

\[
\leq a^j \cdot d(n/b^j)^e = d \cdot n^e(a/b^e)^j
\]
Therefore,
\[w \leq d \cdot n^e \sum_{j=0}^{k} \delta^j, \]
where \(\delta := a/b^e \)

Case 1: \(\delta < 1 \)
\[\sum_{j=0}^{\infty} \delta^j = 1/(1 - \delta) \implies w \leq (d/(1 - \delta))n^e \]
Total running time = \(O(n^e) \)

Case 2: \(\delta = 1 \)
\[\sum_{j=0}^{k} \delta^j = (k + 1) \implies w \leq d(k + 1)n^e \]
Total running time = \(O(n^e \log n) \)
Case 3: $\delta > 1$

$$\sum_{j=0}^{k} \delta^j = \frac{\delta^{k+1} - 1}{\delta - 1}$$

and so for some constant C, we have

$$w \leq Cn^e \delta^k = Cn^e a^k / (b^k)^e \leq Ca^k$$

$$\leq Ca^{\log_b n + 1} = Ca \cdot a^{\log_b n}$$

$$= Ca \cdot b^{\log_b a \cdot \log_b n}$$

$$= Ca \cdot n^{\log_b a}$$

Total running time $= O(n^{\log_b a})$
Summarizing — the “Master Theorem”

Let $f := \log_b a$

Case 1: $e > f \implies O(n^e)$

Case 2: $e = f \implies O(n^e \log n)$

Case 3: $e < f \implies O(n^f)$

Example: Merge Sort: $a = 2$, $b = 2$, $e = 1 \implies f = 1$, Case 2, $T(n) = O(n \log n)$

Example: Binary Search: $a = 1$, $b = 2$, $e = 0 \implies f = 0$, Case 2, $T(n) = O(\log n)$
Problem: multiply two n-digit integers

An “n-digit integer” is an integer a such that $0 \leq a < R^n$, where R is the “radix” or “base”

Think of the radix R as a constant, usually a power of 2 (for example, $R = 2^{32}$ or 2^{64})

An n-digit integer can be represented using an array of n machine words
Addition of \(n \)-digit integers

The sum of two \(n \)-digit integers is an \((n + 1)\)-digit integer, and can be computed in time \(O(n) \)

input: \(a = (a_{n-1}, \ldots, a_0) \), \(b = (b_{n-1}, \ldots, b_0) \)
output: \(c = (c_n, c_{n-1}, \ldots, c_0) \)

\[
\text{carry} \leftarrow 0 \\
\text{for } i \text{ in } [0..n) \text{ do} \\
\quad t \leftarrow a_i + b_i + \text{carry} \quad \text{ // } [0..2R) \\
\quad c_i \leftarrow t \mod R \\
\quad \text{carry} \leftarrow \lfloor t/R \rfloor \quad \text{ // } \{0, 1\} \\
\quad c_n \leftarrow \text{carry}
\]
Multiplication of n-digit integers

The product of two n-digit integers is a $(2n)$-digit integer, and can be computed in time $O(n^2)$

input: $a = (a_{n-1}, \ldots, a_0)$, $b = (b_{n-1}, \ldots, b_0)$

output: $c = (c_{2n-1}, \ldots, c_0)$

initialize $c_i \leftarrow 0$ for i in $[0..2n)$

for i in $[0..n)$ do

 // $c \leftarrow c + R^i b_i \cdot a$
 carry $\leftarrow 0$

 for j in $[0..n)$ do

 $t \leftarrow c_{i+j} + b_i \cdot a_j + carry$ // $[0..R^2)$
 $c_{i+j} \leftarrow t \mod R$
 carry $\leftarrow \lfloor t/R \rfloor$ // $[0..R)$

 $c_{i+n} \leftarrow carry$
Karatsuba’s multiplication algorithm

Input: two n-digit integers, a and b

If n is “very small”, use the naive algorithm

Otherwise, divide each number into two pieces:

$$a = a_{hi}R^k + a_{lo}$$
$$b = b_{hi}R^k + b_{lo},$$

where $k := \lfloor n/2 \rfloor$

\[
\begin{array}{c|c}
\text{a:} & a_{hi} & a_{lo} \\
\hline
\text{b:} & b_{hi} & b_{lo} \\
\end{array}
\]
\[ab = a_{hi}b_{hi}R^{2^k} + (a_{hi}b_{lo} + a_{lo}b_{hi})R^k + a_{lo}b_{lo} \]
One idea:

Recursively compute the four sub-products
\[a_{hi}b_{hi}, \ a_{hi}b_{lo}, \ a_{lo}b_{hi}, \ a_{lo}b_{lo} \]

Case 3 of Master Theorem: \(e = 1, f = \log_2 4 = 2 \)
\(\implies \) another \(O(n^2) \) algorithm

A better idea:

Compute \(A \leftarrow a_{hi} + a_{lo}, \ B \leftarrow b_{hi} + b_{lo} \)

Recursively compute three products:
\[H \leftarrow a_{hi}b_{hi}, \ L \leftarrow a_{lo}b_{lo}, \ F \leftarrow AB \]

Observations:
\[F = a_{hi}b_{hi} + a_{hi}b_{lo} + a_{lo}b_{hi} + a_{lo}b_{lo} \]
\[M := F - (H + L) = a_{hi}b_{lo} + a_{lo}b_{hi} \]
\[P := HR^{2k} + MR^k + L = ab \]

Case 3 of Master Theorem: \(e = 1, f = \log_2 3 \approx 1.585 \)
Running time is \(O(n^{\log_2 3}) \)
Notes:

• Karatsuba is *not* the fastest method: using the Fast Fourier Transform, one can multiply two \(n \)-digit integers in time \(O(n \log n \log \log n) \)

• For 500–10,000 bit numbers, Karatsuba is the fastest

• You use it every time you buy something from amazon.com, or use ssh — it’s used to implement public-key cryptosystems