IEEE 754 Rules & Properties
Analysis of IEEE 754

- As we saw last time, IEEE 754..
 - can represent numbers at wildly different magnitudes (limited by the length of the exponent)
 - provides the same relative accuracy at all magnitudes (limited by the length of the mantissa)

- There are some other nice properties as well related to rounding and arithmetic operations as we’ll see today.

- Turns out there are some drawbacks as well.
Distribution of values

- Remember our 6-bit version of IEEE 754?

- The below graph plots values along a number line between negative and positive infinity.

- Notice how we lose precision as the whole numbers get larger.

- Why is that?
Distribution of values (close-up view)

- 6-bit IEEE-like format
 - $e = 3$ exp bits
 - $f = 2$ frac bits
 - Bias is 3
Special properties of IEEE encoding

- Floating point zero is all zeroes at the bit level.
 - This means zero is all 0’s.

- Can use unsigned integer comparison at the bit level, with a couple notable exceptions…
 - Must consider sign bit
 - Must consider positive and negative 0
 - NaN’s
 - Using unsigned comparison a Nan cannot be greater than any other value.
 - Bit-identical NaN values must not be considered equal.

- Otherwise proper ordering, even across types (ex. norm vs denorm)
Interpreting as unsigned bit patterns

- Lets convince ourselves. Pick two and test.

- Denorm 000011 and Norm 000101
 - What are their decimal values with unsigned int interpretation?

- This is not an accident!

- Special case, the sign bit.
 - Can be overcome without too much trouble (out of scope for this course)
Rounding

- When you do an operation on two floating point numbers such as multiplication or addition, no assurance that there are enough bits to hold result.

- We need a rounding strategy
 - \(x +_f y = \text{Round}(x + y) \)
 - \(x *_f y = \text{Round}(x * y) \)

- Basic idea
 - Compute exact result, make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into \textit{frac}
Rounding modes

- **IEEE 754 rounding modes**

<table>
<thead>
<tr>
<th>Mode</th>
<th>$1.40</th>
<th>$1.60</th>
<th>$1.50</th>
<th>$2.50</th>
<th>−$1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Towards zero</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
<td>−$1</td>
</tr>
<tr>
<td>Round down (−∞)</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
<td>−$2</td>
</tr>
<tr>
<td>Round up (+∞)</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>$3</td>
<td>−$1</td>
</tr>
<tr>
<td>Round Nearest (default)</td>
<td>$1</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>−$2</td>
</tr>
</tbody>
</table>

- IEEE 754 does *Rounding Nearest (Even)* rounding by default,
 - Special case: round to the ‘nearest even’ when you are exactly half-way between two possible rounded values.
 - All others rounding modes are statistically biased.
 - You can change mode, but you have to drop to assembly to do so.
‘Round to nearest’ in decimal

- Applying to other decimal places / bit positions
- When exactly half-way between two possible values, *round so that least significant digit is even*
- E.g., round to nearest hundredth (2 digits right of decimal point)

<table>
<thead>
<tr>
<th>Number</th>
<th>Rounded</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.8949999</td>
<td>7.89</td>
<td>(Less than half way)</td>
</tr>
<tr>
<td>7.8950001</td>
<td>7.90</td>
<td>(Greater than half way)</td>
</tr>
<tr>
<td>7.8950000</td>
<td>7.90</td>
<td>(Half-way - round up so that the LSD is even)</td>
</tr>
<tr>
<td>7.8850000</td>
<td>7.88</td>
<td>(Half-way - round down so that the LSD is even)</td>
</tr>
</tbody>
</table>
‘Round to nearest’ in binary

- **Binary fractional numbers**
 - “Half-way” when bits to right of rounding position = 100…0₂
 - “Even” when least significant bit is 0

- E.g., round to nearest 1/4 (2 bits right of binary point)

<table>
<thead>
<tr>
<th>Value₁₀</th>
<th>Value₂</th>
<th>Rounded₂</th>
<th>Action</th>
<th>Rounded₁₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3/32</td>
<td>10.00 11</td>
<td>10.00</td>
<td>(less than 1/2)</td>
<td>2</td>
</tr>
<tr>
<td>2 3/16</td>
<td>10.00 10</td>
<td>10.01</td>
<td>(greater than 1/2)</td>
<td>2 1/4</td>
</tr>
<tr>
<td>2 7/8</td>
<td>10.11 00</td>
<td>11.00</td>
<td>(1/2 round-up)</td>
<td>3</td>
</tr>
<tr>
<td>2 5/8</td>
<td>10.10 00</td>
<td>10.10</td>
<td>(1/2 round-down)</td>
<td>2 1/2</td>
</tr>
</tbody>
</table>
Properties of floating point addition

- Closed under addition? **Yes**
 - But may generate infinity or NaN

- Commutative? **Yes**

- Associative? **No**
 - Due to overflow and inexactness of rounding
 - \((-1e20 + 1e20) + 3.14 == 3.14\)
 - \(-1e20 + (1e20 + 3.14) == 0.0\)

- 0 is additive identity? **Yes**

- Every element has additive inverse? **Almost**
 - Yes, except for infinities & NaNs

- Monotonicity **Almost**
 - \(a \geq b \Rightarrow a + c \geq b + c?\)
 - Except for infinities & NaNs
Properties of floating point multiplication

- Closed under multiplication? **Yes**
 - But may generate infinity or NaN

- Commutative? **Yes**

- Associative? **No**
 - Due to overflow and inexactness of rounding
 - $1 \times 10^{20} * 1 \times 10^{20} = \text{inf}$, $1 \times 10^{20} * (1 \times 10^{20} * 1 \times 10^{-20}) = 1 \times 10^{20}$

- 1 is multiplicative identity? **Yes**

- Multiplication distributes over addition? **No**
 - Due to overflow and inexactness of rounding
 - $1 \times 10^{20} * (1 \times 10^{20} - 1 \times 10^{20}) = 0.0$, $1 \times 10^{20} * 1 \times 10^{20} - 1 \times 10^{20} * 1 \times 10^{20} = NaN$

- Monotonicity **Almost**
 - $a \geq b$ & $c \geq 0 \Rightarrow a \times c \geq b \times c$?
 - Except for infinities & NaNs
Remember this?

- We saw this on day one…

- **Example:** Is \((x + y) + z = x + (y + z)\)?
 - for integral types? yes.
 - for floating point types?
 - \((-1e20 + 1e20) + 3.14 == 3.14\)
 - \(-1e20 + (1e20 + 3.14) == 0.0\)
- Do you have any intuition as to why yet?
Floating point in C

- Coercion and casting
 - Coercion between int, float, and double *changes bit representation*
 - **double/float → int**
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - **int → double**
 - Exact conversion, as int has \(\leq 53 \) bits
 - **int → float**
 - Will round according to rounding mode, as int has \(\geq 23 \) bits
 - See *coercion_casting.c*
Floating point puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

```c
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor f is NaN

- `x == (int)(float) x`
- `x == (int)(double) x`
- `f == (float)(double) f`
- `d == (double)(float) d`
- `f == -(-f)`
- `2/3 == 2/3.0`
- `d < 0.0 ⇒ ((d*2) < 0.0)`
- `d > f ⇒ -f > -d`
- `d * d >= 0.0`
- `(d+f)-d == f`

See `float_puzzles.c`
Summary

- IEEE Floating Point has clear mathematical properties
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
- Has improved the state of computing with floating point numbers tremendously and has received a number of impactful improvements since its introduction in the 80’s!