Word Size & Endianness
Word size

- Any given computer architecture has a “word size”.

- Word size determines the number of bits used to store a memory address (a pointer in C).

- Therefore you can $2^{\text{word size}}$ number of memory addresses.

- Until recently, most machines used 32 bits (4 bytes) as word size
 - Limits addresses to 4GB of total RAM

- These days, machines have 64-bit word size, actually only uses 48 bits of it for addresses
 - Potentially, could have 2^{48} addresses, that’s a lot of memory.
 - Theoretically up to 65,000 times amount of RAM of 32-bit systems. (~260TB)
Word-oriented memory organization

- Address of a word in memory is the address of the first byte in that word.
- Consecutive word addresses differ by 4 (32-bit) or 8 (64-bit).

<table>
<thead>
<tr>
<th>32-bit Word</th>
<th>64-bit Word</th>
<th>Byte</th>
<th>Addr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addr = 0000</td>
<td>Addr = 0000</td>
<td></td>
<td>0000</td>
</tr>
<tr>
<td>Addr = 0004</td>
<td></td>
<td></td>
<td>0001</td>
</tr>
<tr>
<td>Addr = 0008</td>
<td></td>
<td></td>
<td>0002</td>
</tr>
<tr>
<td>Addr = 0012</td>
<td></td>
<td></td>
<td>0003</td>
</tr>
<tr>
<td>Addr = 0004</td>
<td></td>
<td></td>
<td>0004</td>
</tr>
<tr>
<td>Addr = 0008</td>
<td></td>
<td></td>
<td>0005</td>
</tr>
<tr>
<td>Addr = 0012</td>
<td></td>
<td></td>
<td>0006</td>
</tr>
<tr>
<td>Addr = 0004</td>
<td></td>
<td></td>
<td>0007</td>
</tr>
<tr>
<td>Addr = 0008</td>
<td></td>
<td></td>
<td>0008</td>
</tr>
<tr>
<td>Addr = 0012</td>
<td></td>
<td></td>
<td>0009</td>
</tr>
<tr>
<td>Addr = 0004</td>
<td></td>
<td></td>
<td>0010</td>
</tr>
<tr>
<td>Addr = 0008</td>
<td></td>
<td></td>
<td>0011</td>
</tr>
<tr>
<td>Addr = 0012</td>
<td></td>
<td></td>
<td>0012</td>
</tr>
<tr>
<td>Addr = 0004</td>
<td></td>
<td></td>
<td>0013</td>
</tr>
<tr>
<td>Addr = 0008</td>
<td></td>
<td></td>
<td>0014</td>
</tr>
<tr>
<td>Addr = 0012</td>
<td></td>
<td></td>
<td>0015</td>
</tr>
</tbody>
</table>
Byte ordering in a word

- There are two different conventions of byte ordering in a word

 - **Big Endian**
 - Examples: Sun, PowerPC Mac, Internet
 - Most significant byte has lowest address

 - **Little Endian**
 - Examples: x86, ARM processors running Android, iOS, Windows
 - Most significant byte has highest address

- In other words, if you have a multi-byte word, what order to the bytes appear? What “end” of the word does the MSB live at?
Byte ordering in a word con’t

- Variable x has 4-byte value of $0x01234567$
- Address given by dereferencing x is $0x100$

![Byte Ordering Diagram](image)

- We can test this programmatically. See `memory/endian.c`
Byte ordering representation in C

- Casting any pointer to unsigned char* allows is to treat the memory as a byte array.

- Using printf format specifiers
 - %p - print pointer
 - %x - print value in hexadecimal

- See memory/byte_ordering.c
Floating Point
Fractional binary numbers

- How can we represent fractional binary numbers?
- One idea: use same approach as with decimal numbers, except use powers of 2 (as opposed to 10).
- So what is 1011.101_2?
Fractional binary numbers

- How can we represent fractional binary numbers?
- One idea: use same approach as with decimal numbers, except use powers of 2 (as opposed to 10).
- So what is 1011.101_2?

 $$(1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) + (1 \times 2^{-1}) + (0 \times 2^{-2}) + (1 \times 2^{-3})$$

 $$8 + 2 + 1 + \frac{1}{2} + \frac{1}{8}$$

 11.625_{10}
Fractional binary numbers

- How can we represent fractional binary numbers?

- One idea: use same approach as with decimal numbers, except use powers of 2 (as opposed to 10).

- So what is 1011.101_2?

$$\begin{align*}
(1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) + (1 \times 2^{-1}) + (0 \times 2^{-2}) + (1 \times 2^{-3}) \\
8 + 2 + 1 + \frac{1}{2} + \frac{1}{8} \\
11.625_{10}
\end{align*}$$

- Going the other direction

- $5 \frac{3}{4} \quad \rightarrow \quad 101.11_2$

- $2 \frac{7}{8} \quad \rightarrow \quad 10.111_2$
Insufficient representation

- That way of representing floating point numbers is simple, but has two significant limitations.

- Only numbers that can be written as the sum of powers of 2 can be represented exactly.

 - Example
 - \(1/3\) 0.0101010101[01]…\(2\)
 - \(1/5\) 0.001100110011[0011]…\(2\)
 - \(1/10\) 0.0001100110011[0011]…\(2\)

- Just one possible location for the binary point.

 - This limits how many bits can be used for the fractional part and the whole number part.

 - We can either represent very large numbers well or very small numbers well, but not both.
IEEE Floating Point

- **IEEE Standard 754**
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
- **Driven by numerical concerns**
 - Nice standards for rounding, overflow, underflow
 - Numerical analysts predominated over hardware designers in defining standard
 - Therefore, hard to make fast in hardware (i.e. its slow!)
IEEE precision options

Single precision: 32 bits

Double precision: 64 bits
Floating Point Representation

- **Numerical form**
 \[(-1)^s \times M_2 \times 2^E \]
 - Sign bit \(s \) determines whether number is negative or positive
 - **Significand** \(M \) normally a fractional value, range \([1.0, 2.0)\)
 - **Exponent** \(E \) weights value by (possibly negative!) power of two

- **Encoding** (3 bit vectors that encode a floating point number)
 - Most significant bit is the sign bit \(s \)
 - \(\text{exp} \) field encodes \(E \) (but is not equal to \(E \))
 - \(\text{frac} \) field encodes \(M \) (but is not equal to \(M \))
Interpreting IEEE Values

- Three possible methods by which we evaluate a given bit vector representing a floating point type.
 - ‘Normalized’ values
 - ‘Denormalized’ values
 - ‘Special’ values
- Normalized is the most common case.
- Denormalized is for representing numbers very close to zero.
- Special, is well, special.
- The value of \exp determines “type” and therefore how it is encoded and interpreted.
Floating point encoding number line
Normalized values

- Precondition: $exp \neq 000\ldots0$ and $exp \neq 111\ldots1$
- For some bit pattern: $value_{10} = (-1)^s \times M_2 \times 2^E$
- $s = \text{sign bit } s$
- $E = [exp] - \text{bias}$
 - $\text{bias} = 2^{k-1} - 1$
 - $k = \text{number of bits in } exp$
- $M = 1.[frac]$
 - By assuming the leading bit is 1, we get an extra bit for “free”
 - Smallest value when all bits are zero: $000\ldots0$, $M = 1.0$
 - Largest value when all bits are one: $111\ldots1$, $M = 2.0 - \epsilon$
Normalized encoding example

- float f = 15213.0;

 \[15213_{10} = 11101101101101_{2} \]

 \[= 1.1101101101101_{2} \times 2^{13} \]

\[\text{value}_{10} = (-1)^s \times M_2 \times 2^E \]
Normalized encoding example, con’t

- float f = 15213.0;

 \[15213_{10} = 11101101101101_{2} \]
 \[= 1.1101101101101_{2} \times 2^{13} \]

- Significand (aka Mantissa)

 \[M = 1.1101101101101_{2} \times 2^{13} \]
 \[frac = 11011011011010000000000000_{2} \]

\[value_{10} = (-1)^{s} \times M \times 2^{E} \]
Normalized encoding example, con’t

- float \(f = 15213.0; \)
 \[
 15213_{10} = 11101101101101_{2} \\
 = 1.1101101101101_{2} \times 2^{13}
 \]

- Significand (aka Mantissa)
 \[
 M = 1.1101101101101_{2} \times 2^{13} \\
 frac = 1101101101101000000000000_{2}
 \]

- Exponent
 \[
 E = 13 \\
 bias = (2^{8} - 1) = 127_{10} \\
 exp = E + bias = 140_{10} = 10001100_{2}
 \]

- Value
 \[
 value_{10} = (-1)^{s} \times M \times 2^{E}
 \]
Range of Expression

- For normalized 32-bit single precision…
 - The value if exp 1…254
 - The value of $E -126…127$
 - Fairly large numbers; $\leq 2^{127}$
 - Fairly small numbers; $\geq 2^{-126}$

- For normalized 64-bit double precision, obviously this range is greater.

- Note that there is always a leading 1 in the value of mantissa M for ‘normalized values’, so we cannot represent numbers that are very small.

- Next, we will observe what happens when exp is either 00…0 or 11…1
Denormalized values

- Precondition: $\text{exp} = 000\ldots0$
- For some bit pattern: $\text{value}_{10} = (-1)^s \times M_2 \times 2^E$
- $M = 0.\text{frac}$
 - No implicit 1 prefix.
 - Allows for representation of numbers much closer to 0
- $E = 1 - \text{bias}$
 - $\text{bias} = 2^{k-1} - 1$
 - $k = \text{number of bits in exp}$
 - Differs from ‘normalized’, as exp is 0, so use 1
- If $\text{exp} = 000\ldots0, \text{frac} = 000\ldots0$ represents 0.0
- If $\text{exp} = 000\ldots0, \text{frac} \neq 000\ldots0$ represent numbers very close to 0.0
Special values

- Precondition: \(exp = 111\ldots1 \)

- If \(exp = 111\ldots1 \), \(frac = 000\ldots0 \)
 - Represents positive or negative infinity, a result of overflow
 - Examples:
 - \(-1.0/-0.0 = +\infty\)
 - \(1.0/-0.0 = -\infty\)

- If \(exp = 111\ldots1 \), \(frac \neq 000\ldots0 \)
 - Not-a-Number (NaN)
 - A case when no numeric value can be determined
 - Examples:
 - \(\sqrt{-1}\)
 - \(\infty-\infty\)
 - \(\infty*0\)
Tiny Floating Point
Tiny Floating Point

- 6-bit Floating Point Representation
 - The sign bit s is in the most significant bit
 - The next three bits are the exp, with a bias of 3
 - Note that the bias is the same for all 6-bit precision numbers!
 - The last two bits are the $frac$

- IEEE Format
 - normalized, denormalized and special values
Tiny Normalized Example 1

\[
\text{value}_{10} = (-1)^s \times M_2 \times 2^E
\]

\[E = \exp - \text{bias}\]

- **000100_2** (smallest positive value)
 - \(s = (-1)^0 = 1\)
 - \(M = 1.00_2\)
 - \(\text{bias} = 2^{3-1} - 1 = 3_{10}\)
 - \(E = 001_2 - 3_{10} = 1_{10} - 3_{10} = -2_{10}\)
 - \(1 \times 1.00_2 \times 2^{-2} = .01_2 = 0.25_{10}\)
Tiny Normalized Example 2

\[
\text{value}_{10} = (-1)^s \times M_2 \times 2^E
\]
\[
E = \text{exp} - \text{bias}
\]

- **011011_2** (largest positive value)
 - \(s = (-1)^0 = 1\)
 - \(M = 1.11_2\)
 - \(\text{bias} = 2^{3-1} - 1 = 3_{10}\)
 - \(E = 110_2 - 3_{10} = 6_{10} - 3_{10} = 3_{10}\)
 - \(1 \times 1.11_2 \times 2^3 = 1110_2 = 14.0_{10}\)
Tiny Denormalized Example 1

\[\text{value}_{10} = (-1)^s \times M_2 \times 2^E \]

\[E = 1 - \text{bias} \]

- **100011_2** (smallest negative value)
 - \(s = (\neg 1)^1 = -1 \)
 - \(M = 0.11_2 \)
 - \(\text{bias} = 2^{3-1} - 1 = 3_{10} \)
 - \(E = 1_{10} - 3_{10} = -2_{10} \)
 - \(-1 \times 0.11_2 \times 2^{-2} = -0.0011_2 = -0.1875_{10} \)

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3-bits</td>
<td>2-bits</td>
</tr>
</tbody>
</table>

All possible 6-bit sequences

- **Normalized**
- **Denormalized**
- **Special**

All possible 6-bit sequences

<table>
<thead>
<tr>
<th>000000</th>
<th>010000</th>
<th>100000</th>
<th>110000</th>
</tr>
</thead>
<tbody>
<tr>
<td>000001</td>
<td>010001</td>
<td>100001</td>
<td>110001</td>
</tr>
<tr>
<td>000010</td>
<td>010010</td>
<td>100010</td>
<td>110010</td>
</tr>
<tr>
<td>000011</td>
<td>010011</td>
<td>100011</td>
<td>110011</td>
</tr>
<tr>
<td>000100</td>
<td>010100</td>
<td>100100</td>
<td>110100</td>
</tr>
<tr>
<td>000101</td>
<td>010101</td>
<td>100101</td>
<td>110101</td>
</tr>
<tr>
<td>000110</td>
<td>010110</td>
<td>100110</td>
<td>110110</td>
</tr>
<tr>
<td>000111</td>
<td>010111</td>
<td>100111</td>
<td>110111</td>
</tr>
<tr>
<td>001000</td>
<td>011000</td>
<td>101000</td>
<td>111000</td>
</tr>
<tr>
<td>001001</td>
<td>011001</td>
<td>101001</td>
<td>111001</td>
</tr>
<tr>
<td>001010</td>
<td>011010</td>
<td>101010</td>
<td>111010</td>
</tr>
<tr>
<td>001011</td>
<td>011011</td>
<td>101011</td>
<td>111011</td>
</tr>
<tr>
<td>001100</td>
<td>011100</td>
<td>101100</td>
<td>111100</td>
</tr>
<tr>
<td>001101</td>
<td>011101</td>
<td>101101</td>
<td>111101</td>
</tr>
<tr>
<td>001110</td>
<td>011110</td>
<td>101110</td>
<td>111110</td>
</tr>
<tr>
<td>001111</td>
<td>011111</td>
<td>101111</td>
<td>111111</td>
</tr>
</tbody>
</table>
Tiny Denormalized Example 2

\[\text{value}_{10} = (-1)^s \cdot M_2 \cdot 2^E \]
\[E = 1 - \text{bias} \]

- **000001_2** (smallest positive less than 1)
 - \(s = (-1)^0 = 1 \)
 - \(M = 0.01_2 \)
 - \(\text{bias} = 2^{3-1} - 1 = 3_{10} \)
 - \(E = 1_{10} - 3_{10} = -2_{10} \)
 - \(1 \cdot 0.01_2 \cdot 2^{-2} = 0.0001_2 = 0.0625_{10} \)

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3-bits</td>
<td>2-bits</td>
</tr>
<tr>
<td>000000</td>
<td>010000</td>
<td>100000</td>
</tr>
<tr>
<td>000001</td>
<td>010001</td>
<td>100001</td>
</tr>
<tr>
<td>000010</td>
<td>010010</td>
<td>100010</td>
</tr>
<tr>
<td>000011</td>
<td>010011</td>
<td>100011</td>
</tr>
<tr>
<td>000100</td>
<td>010100</td>
<td>100100</td>
</tr>
<tr>
<td>000101</td>
<td>010101</td>
<td>100101</td>
</tr>
<tr>
<td>000110</td>
<td>010110</td>
<td>100110</td>
</tr>
<tr>
<td>000111</td>
<td>010111</td>
<td>100111</td>
</tr>
<tr>
<td>001000</td>
<td>011000</td>
<td>101000</td>
</tr>
<tr>
<td>001001</td>
<td>011001</td>
<td>101001</td>
</tr>
<tr>
<td>001010</td>
<td>011010</td>
<td>101010</td>
</tr>
<tr>
<td>001011</td>
<td>011011</td>
<td>101011</td>
</tr>
<tr>
<td>001100</td>
<td>011100</td>
<td>101100</td>
</tr>
<tr>
<td>001101</td>
<td>011101</td>
<td>101101</td>
</tr>
<tr>
<td>001110</td>
<td>011110</td>
<td>101110</td>
</tr>
<tr>
<td>001111</td>
<td>011111</td>
<td>101111</td>
</tr>
<tr>
<td>010000</td>
<td>100000</td>
<td>101000</td>
</tr>
<tr>
<td>010001</td>
<td>100001</td>
<td>101001</td>
</tr>
<tr>
<td>010010</td>
<td>100010</td>
<td>101010</td>
</tr>
<tr>
<td>010011</td>
<td>100011</td>
<td>101011</td>
</tr>
<tr>
<td>010100</td>
<td>100100</td>
<td>101100</td>
</tr>
<tr>
<td>010101</td>
<td>100101</td>
<td>101101</td>
</tr>
<tr>
<td>010110</td>
<td>100110</td>
<td>101110</td>
</tr>
<tr>
<td>010111</td>
<td>100111</td>
<td>101111</td>
</tr>
<tr>
<td>011000</td>
<td>101000</td>
<td>110000</td>
</tr>
<tr>
<td>011001</td>
<td>101001</td>
<td>110001</td>
</tr>
<tr>
<td>011010</td>
<td>101010</td>
<td>110010</td>
</tr>
<tr>
<td>011011</td>
<td>101011</td>
<td>110011</td>
</tr>
<tr>
<td>011100</td>
<td>101100</td>
<td>110100</td>
</tr>
<tr>
<td>011101</td>
<td>101101</td>
<td>110101</td>
</tr>
<tr>
<td>011110</td>
<td>101110</td>
<td>110110</td>
</tr>
<tr>
<td>011111</td>
<td>101111</td>
<td>110111</td>
</tr>
</tbody>
</table>

All possible 6-bit sequences
Tiny special values

- **Result of overflow or infeasibility**
 - \(exp = 111, \ frac = 00 \)
 - 011100, 111100
 - Positive or negative infinity
 - \(exp = 111, \ frac \neq 00 \)
 - 011101, 011110, 011111, 111101, 111110, 111111
 - Not-a-Number (NaN)
Exercises
Exercise 1

value_{10} = (-1)^s \times M_2 \times 2^E

E = ? - bias

- 100111_2
 - s = (-1)^s = ?
 - M = ?_2
 - bias = ?_{10}
 - E = ?_{10}
 - value_{10} = ? = -0.4375_{10}
Exercise 2

value\textsubscript{10} = (-1)^s \times M_2 \times 2^E

E = ? - bias

- 100001\textsubscript{2}
 - s = (-1)^s = ?
 - M = ?\textsubscript{2}
 - bias = ?\textsubscript{10}
 - E = ?\textsubscript{10}
 - value\textsubscript{10} = ? = -0.0625\textsubscript{10}