
Virtual Machines: Concepts & Applications

Mohamed Zahran (aka Z)

mzahran@cs.nyu.edu

http://www.mzahran.com

CSCI-GA.3033-016

Lecture 8: System VMs

Disclaimer: Many
slides of this lecture
are based on the slides of
authors of the textbook
from Elsevier.
All copyrights reserved.

System VMs

• Support multiple guest OSes on single hardware
platform; all running the same ISA

Linux
Application

Linux OS

Windows
Application

Windows OS

OS/2
Application

OS/2 OS

Intel x86
Hardware

Virtual Intel x86 Virtual Intel x86 Virtual Intel x86

System VMs

• Support multiple guest OSes on single hardware
platform; all running the same ISA

Linux
Application

Linux OS

Windows
Application

Windows OS

OS/2
Application

OS/2 OS

Intel x86
Hardware

Virtual Intel x86 Virtual Intel x86 Virtual Intel x86

Virtual Machine Manager (VMM)

Applications (partial list)
• Simultaneous support for multiple OSes/Apps

– Easy way to implement multiprogramming without
requiring complete multiprogramming OS.

• Legacy applications

• Simultaneous support for different OSes/Apps
– E.g. Windows and Unix

• Error containment
– sandboxing

– If a VM crashes, the other VMs can continue to work

 Assumes VMM is correct (smaller/simpler)

• Operating System debugging
– Can proceed while system is being used for normal work

Applications, contd.

• Operating System Migration
– Can proceed while “old” OS continues to be

used

Production Users

System Programmers
New

Release

Old
Release

Unconverted
Production Users

Converted
Production Users

new release
being tested

new release
installed

System Programmers

Converted
Production Users

Permanently
Unconverted

Production Users

newer release
being tested

TIME

Applications, contd.
• System software development

• Support for multiple networked machines on one
physical machine
– Allows debug of network software

• Event monitoring
– traces of execution

– replay

• Education

Copyright: Elsevier Inc

System VMs
• Virtual Machine Monitor (VMM) manages real

hardware resources

• All Guest systems must be given logical
hardware resources

• All resources are virtualized
– By partitioning real resources

– By sharing real resources

• Guest state must be managed
– By using indirection

– By copying

x86 PC

Linux

Linux

applications

Windows

Windows

applications

OS/2

OS/2

applications

Virtual Machine Monitor (VMM)

State Management:
Indirection

• Hold guest state in VMM
memory

• Change pointer on guest
switch

• Example: registers

Processor

VMM Memory

Register
values
for VM 1

Register
 values
for VM 2

Register
 values
for VM 3

Register Block

Pointer

State Management:
Copying

• Hold guest state in VMM
Memory

• Copy state on guest switch

VMM Memory

Processor

Processor

Registers

Register values

for VM 1

Register values

for VM 2

Register values

for VM 3

System VMs: Mode of Operation

• VMM runs in system mode
– VMM manages/protects processor through

conventional mechanisms

• Guest OSes run in user mode
 Guest OSes do not have direct control over

hardware resources
 All attempts to interact w/ hardware

resources are intercepted by VMM

• VMM manages shadow copies of Guest
System state (incl. control registers)

• VMM schedules and runs Guest Systems

VM Timesharing

• VMM Timeshares resources among guests
– Similar to OS timesharing applications

VMM saves
architected state

of running VM

VMM restores
architected state

for next VM

VMM sets PC to timer
interrupt handler of OS

in next VM

VMM sets timer
interval and

enables
interrupts

Timer interrupt
occurs

VMM
determines next

VM to be
activated

VMM Active First VM Active Next VM Active

• Guest OS must not be allowed to set timer interrupt
• Guest OS must not know the real timer value set by VMM
• VMM can provide guest OS with emulated virtual interval timer

13

Native and Hosted VMs

Non-privileged
modes

Privileged
Mode

Applications

OS

Traditional
uniprocessor

system

Hardware

Virtual
Machine

VMM

Hardware

Virtual
Machine

Host OS

Hardware

VMM

Virtual
Machine

Host OS

Hardware

VMM

Native
VM system

User-mode
Hosted

VM system

Dual-mode
Hosted

VM system

Virtualizing the Processor

Virtualizing the processor

Execution of the guest instructions

Emulation Direct native execution

Privileged Instructions
• Definition: They are instructions that

trap if executed in user mode; not in
supervisor mode

• VMM keeps track of the intended mode.
– e.g. The guest OS is intended to work in

system mode but is actually working in user
mode in this virtualized environment.

Control Sensitive Instructions

All instructions that attempt to change the
configuration of resources
– e.g. page table in general, timer

Behavior Sensitive instructions:

All instructions whose behavior or results
depend on the configuration

• Examples:
– Load physical address
– POPF (Intel x86): pop stack into flag

register

Instruction Types -- Summary

Privileged

Non-
Privileged

Sensitive Behavior-
sensitive

Control-
sensitive

Innocuous

Sensitive

Innocuous Instructions: Those that are not control or
behavior sensitive

VMM components
Instruction
trap occurs

Dispatcher

Allocator

Interpreter
Routine 2

Interpreter
Routine 1

Interpreter
Routine n

These instructions
desire to change

machine resources,
e.g. Load Relocation

Bounds Register

These instructions do not
change machine resources,

but access privileged
resources, e.g. IN, OUT,

Write TLB

Privileged
Instruction

Privileged
Instruction

Privileged
Instruction

Privileged
Instruction

VMM components
• Dispatcher

– Top level control module for VMM

– Decides which of other components to call

• Allocator
– Decides which system resources should be provided and

to manage shared resources among VMs

• Interpreters
– One per privileged instructions

– Emulate the effects of privileged instructions when
operating on virtual resources

• VMM runs in supervisor mode; all other software in
user mode

Privileged Instruction Handling
Example:
LPSW: Load Program Status Word
 Includes Mode Bit and PC (among other things)

Guest OS code in VM
(user mode)

Privileged instruction (LPSW)
Χ
...
Χ
...
Next instruction (target of LPSW)

VMM code
(privileged mode)

LPSW Routine :
Change mode to privileged
Check privilege level in VM
Emulate instruction
Compute target
Restore mode to user
Jump to target

Dispatcher

Virtual Machine “requirements”

1. Efficiency: All innocuous instructions are
executed by the hardware directly

2. Resource control: The allocator must be
invoked when any program attempts to
affect system resources

3. Equivalence: Any program executes
exactly as on real hardware except
– Performance
– Availability of system resources

• VMM must satisfy all three requirements

Virtual Machines: Main Theorem
A virtual machine monitor can be constructed if the set

of sensitive instructions is a subset of the set of
privileged instructions

Proof shows
Equivalence by interpreting privileged instructions and

executing remaining instructions natively
Resource control by having all instructions that change

resources trap to the VMM
Efficiency by executing all non-privileged instructions

directly on hardware

A key aspect of the theorem is that it is easy to check

Virtual Machines: Main Theorem
A virtual machine monitor can be constructed if the set

of sensitive instructions is a subset of the set of
privileged instructions

Recursive Virtualization

Privileged
Mode

Virtual
Machine

VMM

Hardware

Virtual
Machine

Virtual
Machine

2 nd level VMM

Virtual
Machine

Problematic ISAs

• Some ISAs, x86 included, have sensitive but
not priviliged instructions Ą called critical
instructions

• Violating one condition for efficient VMM
construction Ą we call them hybrid virtual
machines

• Solution:
– VMM scans the guest code stream before

execution
– Discover all critical instructions
– Replace them with traps or jump to VMM
– This is called patching

Hybrid Virtualization: Patching

Scan Guest OS, find problem instructions, replace with jump to
VMM

Control transfer,
e.g. trap

Scanner and
Patcher

VMM

Code Patch for
discovered

critical instruction

Original Program Patched Program

How to do that?

• VMM to take control at the head of
each BB.

• Scan instructions in sequence till the
end of BB.

• Do the patching along the line.

• Add another trap at the end of BB to
allow VMM to regain control when BB
finishes.

High overhead …
Can we optimize?

• Optimization 1:
– Trap at the end of a scanned BB can be

replaced by the original jump after all
possible successors have been encountered.

– Cannot do that with indirect jumps though.

• Optimization 2:
– VMM can scan several BB at once (if they

end with direct jumps)

Optimization 3

• Trap at the beginning of a block
containing the critical instruction

• Using lookup table, VMM executes
specialized emulated routines (code
caching).

• Different instances of the critical
instruction may have several
interpretations depending in the block

Optimization 3

Control transfer,
e.g. trap Code section

emulated in code
cache

Patched Program VMM

Block 1

Block 2 Block 3

Translation

Table

Code
Cache

Block 1

Block 2

Block 3

Two critical
instructions combined

into a single block

Specialized
Emulation Routines

Virtualizing Memory

Virtualizing Memory: Review

 PT Pointer OS managed

Real Pages user
user

super

user

super

process 1 PT

process n PT

OS memory region

Context
 switch

PT: Page Table

Virtual Memory Support in
System VM

• Each guest VM has its own set of virtual
page tables.

• virtual address Ą real address Ą physical
address

• Physical memory: the hardware memory
• Real memory: guest VM’s illusion of

physical memory
• VMM maintains a swap space distinct from

the swap spaces of each of the guests.

Managed by
VMM

Page Table & TLB
• If page table is architected

– Its structure is defined by the ISA
– OS and hardware cooperate in maintaining and

using it.
– TLB is maintained by the hardware and not visible

to OS
– e.g. IA-32

• If TLB is architected
– Its structure is defined by the ISA.
– ISA provides instructions to manipulate it.
– Page tables are part of the ISA’s implementation.
– Hardware is unaware of the page table structure
– TLB miss causes a trap to the OS

Virtualizing Architected
Page Tables

• The OS in each guest VM maintains its
own page tables.

• An optimization step:
– VMM maintains virtual-to-physical mapping

in shadow page tables, one for each guest
VM.

– These tables are the ones used by the
hardware to make the translation and
update the TLB

Virtualizing Architected
Page Tables

• Page table pointer register is
virtualized:
– VMM manages the real page table pointer

– VMM has access to the virtual version of
the page table pointer associated with each
guest VM.

– Access to page table pointer (for read or
write) by guest VM traps to VMM.

• How to handle page faults?

Virtualizing Architected TLB

• Software (ISA) managed TLBs
• Here the TLB is virtualized and not the

page table.
• VMM maintains a copy of each guest VM

TLB as well as the real TLB.
• Any instruction modifying the TLB in

the guest VM is intercepted by VMM to
keep VMM copies up to date.

• How does VMM manage the real TLB?

Virtualizing Architected TLB:
Method 1

• VMM re-write real TLB whenever a
guest VM is activated

• Done after translating real addresses to
physical addresses.

• problem: fairly high overhead

Virtualizing Architected TLB:
Method 2

ASID: Address Space IDentifier

Virtualizing I/O

Virtualizing I/O
• Hardest part of virtualization

– Many device types
– Many devices of each type

• Each with its own driver

– New devices may be added during lifetime of
system

• The main strategy:
– Construct a virtual version of the device
– Virtualize the I/O activity directed at the

device

Device Types
• Dedicated

– Example: Monitor, mouse, keyboard
– Device doesn’t have to be virtualized
– VMM still controls due to privileged mode

• Partitioned
– Example: Disk
– Make multiple, smaller virtualized versions
– VMM must translate the parameters (and status) from the

virtualized version to the physical one and back.
• Shared

– Example: Network adapter
– VMM manages virtual state information
– Translate virtual requests to physical requests

• Spooled
– Example: Printer
– Shared but at coarse granularity

Spooled Devices

• Two level spool table

• First write to VM spool area

• When ready, VMM copies to VMM spool area

• Then invokes device

• When device finished
–Both VM and VMM spool tables receive “complete”

Spooled Devices
Virtual Machine 1 Spool Table

Program Status Location Size

A Printed 1000 400

B Completed 2000 200

C Running 3000 200

D Completed 4000 500

Virtual Machine 2 Spool Table

Program Status Location Size

P Running 1000 400

Q Completed 2000 800

Real loc.

11000

12000

13000

14000

Real loc.

21000

22000

VMM Spool Table

Program Status Size

A Printed 400

Q Printing 800

B Waiting 200

D Waiting 500

Real loc.

30000

31000

31800

30400

VM

1

2

1

1

10000

20000

30000

First level
at VM

Second level
at VMM

Non-existent Devices

• Implement virtual version only

• Example: network adapter
– Allows VMs on same platform to

communicate

Virtualizing I/O Activity

• OS manages I/O resource
– Allocates space on storage devices, etc.
– Serializes requests for shared devices

• User software performs system calls
with general I/O requests

• OS converts I/O calls to driver calls
– Driver contains device-specific software

Exact commands, controller registers,
etc.

• Driver generates device (and bus)-
specific I/O operations

system calls

Hardware

I/O Drivers

phy. mem. and I/O operations

VM mgr

Operating System

driver calls

Application

VMM can intercept guest I/O actions at syscall interface, at device driver interface,
or at the I/O operation level interface.

At system call interface
• System call traps to VMM
• VMM interprets system call to produce driver calls
• VMM contains shadow drivers
• Guest OS contains virtual I/O code and drivers

– Must still be executed, for correct guest state updates

• Problems
– VMM must interpret all I/O system calls for all guest

OSes
– VMM must have access to drivers for all real devices

At driver call interface
• Guest OS contains driver stubs
• Guest OS driver calls can operate on

generic virtual devices
– To simplify conversion

• VMM contains shadow drivers
– These drivers correspond to real devices

• Generic I/O operations passed to VMM
and converted to shadow driver calls

• Problem
– VMM must have access to real drivers
– Need generic drivers for each guest OS
– Guest OSes must have well defined,

modular driver call interface

VMM .

generic I/O operations

Generic I/O
Drivers

Hardware

I/O operations

Guest OS
driver calls

system calls

Guest Application

I/O drivers

interpret

At I/O device interface
• Guest OSes contain real drivers
• Low level I/O operations trap to VMM
• VMM must check/translate I/O

operation
• If legal, VMM performs I/O operation

on behalf of guest
• VMM passes control back to guest
• Problems

– VMM must know some device specifics
 (even if it doesn’t contain full drivers)

VMM .

I/O operations

I/O Drivers

check/
trans-

late

Hardware

I/O operations

Guest OS

driver calls

system calls

Guest Application

Reasons for VM Slowdown

• VM initialization
– Setting up virtual state

• Privileged Instruction overhead
– Trap to VMM
– Interpretation by VMM
– Return from VMM to guest

• System Calls by guest in user mode
– Requires trap/reflection back to Guest OS

• Interrupts
– Reflect through VMM before getting to Guest OS

• Virtual Memory Management
– Shadow page faults when page is already mapped

• Duplicated effort between VMM and Guest OS
– Memory management done by both

Case Study:
VMware

VMware: an x86 System Virtual Machine

• Applying Conventional VMs to PCs – Problems:
– Installing the VMM on bare hardware, then booting Guests

onto VMM.

– Need to support many device types, many more drivers

• VMware solves both problems

• Uses Host OS/Guest OS model
– Hosted VM

– Uses Host OS for some VMM functions

• Including I/O

VMware: Three Main components

• Begin with already-loaded Host OS
• VMDriver (Pseudo-Driver)

– Host OS-specific
– Installed as a driver, but can

take over the machine
– Acts as conduit between

System and User VMMs
• VMMonitor (System-level VMM)

– Slipped under installed OS
via Pseudo-Driver

• VMApp (User-level VMM)
– Appears as ordinary

application to installed OS
– Can make normal I/O calls

(and use installed drivers)

Virtual Machine

 Host OS

Hardware

Applications

OS
(eg. Linux, Windows)

Hardware
(x86 motherboard,

display, adapters, etc.)

VMMonitor

 Host Apps

VMDriver

VMApp User mode

Privileged
Mode

VMM Communication
• User VMM (VMapp) performs system

call to pseudo-driver; then waits for
response

• System VMM maintains control, then
sends response message back to User
VMM

Resource Management
• Host OS schedules processor resource

– User-level VMM is just another application

• Host OS manages memory
– VM memory is allocated as address space

of User-level VMM

– User level VMM “mallocs”; whole VM uses it

VMware I/O
• Guest OS contains generic drivers

• Generic drivers operate on virtual
devices managed by user mode
portion of VMM

• User mode portion of VMM makes
normal system calls

• System calls cause Host OS to use
real drivers and devices

Hardware

Guest OS

system calls

phy. mem. and I/O operations

Generic I/O
dirvers

VM mgr

mgr

phy. mem. and I/O operations

Host OS

System Calls

VM mgr I/O Drivers

Guest Application

(user mode)

VMM
SW
VM

Virtual
Devices

Conclusions

• System VMs virtualize processor, memory, and
I/O

• System VMs must control all resources
• There are two type of resources:

– replicated (keyboard, …)
– shared (processor, memory, storage, and some

I/O)

• ISAs affect the way we design system VMs:
– sensitive instructions and privileged instructions
– architected page tables or architected TLBs

