7. Classification
Agenda

• Introduction to machine learning
• Gradient descent
• Logistic regression
• Stochastic gradient descent
• Scaling optimization
Machine Learning: High-Level

- Algorithms that can learn from data
- Supervised
 - Infer a function from labeled training data
- Unsupervised
 - No labels in training data
 - Find interesting patterns or structure
Supervised Machine Learning

- The generic problem of function induction given sample instances of input and output
 - Classification: output draws from finite discrete labels
 - Regression: output is a continuous value
- Focus here on supervised classification
 - Sufﬁces to illustrate large-scale machine learning

This is not meant to be an exhaustive treatment of machine learning!
Applications

• Spam detection
• Content (e.g. movie) classification
• POS tagging
• Friendship recommendation
• Document ranking
• Many, many more!
Supervised Binary Classification

- Restrict output label to be *binary*
 - Yes/No
 - 1/0
- Binary classifiers form a primitive building block for multi-class problems
 - One vs. rest classifier ensembles
 - Classifier cascades
Limits of Supervised Classification?

• Why is this a big data problem?
 • Isn’t gathering labels a serious bottleneck?
• Solution: user behavior logs
 • Learning to rank
 • Computational advertising
 • Link recommendation
• The virtuous cycle of data-driven products
The Task

Given \(D = \{(x_i, y_i)\}_i^n \)

\[x_i = [x_1, x_2, x_3, \ldots, x_d] \]
\[y \in \{0, 1\} \]

Induce \(f : X \rightarrow Y \)

Such that loss is minimized

\[\frac{1}{n} \sum_{i=0}^{n} \ell(f(x_i), y_i) \]

Typically, consider functions of a parametric form:

\[\arg \min_{\theta} \frac{1}{n} \sum_{i=0}^{n} \ell(f(x_i; \theta), y_i) \]
Key insight: machine learning as an optimization problem!
(closed form solutions generally not possible)
Gradient Descent: Preliminaries

• Rewrite:
 \[\arg \min_{\theta} \frac{1}{n} \sum_{i=0}^{n} \ell(f(x_i; \theta), y_i) \quad \longrightarrow \quad \arg \min_{\theta} L(\theta) \]

• Compute gradient:
 • “Points” to fastest increasing “direction”
 \[\nabla L(\theta) = \left[\frac{\partial L(\theta)}{\partial w_0}, \frac{\partial L(\theta)}{\partial w_1}, \ldots, \frac{\partial L(\theta)}{\partial w_d} \right] \]
 • So, at any point:
 \[b = a - \gamma \nabla L(a) \]
 \[L(a) \geq L(b) \]
Gradient Descent: Iterative Update

• Start at an arbitrary point, iteratively update:
 \[\theta^{(t+1)} \leftarrow \theta^{(t)} - \gamma^{(t)} \nabla L(\theta^{(t)}) \]

• We have:
 \[L(\theta^{(0)}) \geq L(\theta^{(1)}) \geq L(\theta^{(2)}) \ldots \]

• Lots of details:
 • Figuring out the step size
 • Getting stuck in local minima
 • Convergence rate
Gradient Descent

Repeat until convergence:

\[\theta^{(t+1)} \leftarrow \theta^{(t)} - \gamma^{(t)} \frac{1}{n} \sum_{i=0}^{n} \nabla \ell(f(x_i; \theta^{(t)}), y_i) \]
Intuition behind the math...

\[\ell(x) \]

\[\frac{d}{dx} \ell \rightarrow \nabla \ell \]

\[\theta^{(t+1)} \leftarrow \theta^{(t)} - \gamma^{(t)} \frac{1}{n} \sum_{i=0}^{n} \nabla \ell(f(x_i; \theta^{(t)}), y_i) \]

New weights Old weights Update based on gradient
Gradient Descent

\[\theta^{(t+1)} \leftarrow \theta^{(t)} - \gamma^{(t)} \frac{1}{n} \sum_{i=0}^{n} \nabla \ell(f(x_i; \theta^{(t)}), y_i) \]
Lots More Details...

- Gradient descent is a “first order” optimization technique
 - Often, slow convergence
 - Conjugate techniques accelerate convergence
- Newton and quasi-Newton methods:
 - Intuition: Taylor expansion
 \[f(x + \Delta x) = f(x) + f'(x)\Delta x + \frac{1}{2} f''(x)\Delta x^2 \]
 - Requires the Hessian (square matrix of second order partial derivatives): impractical to fully compute
Logistic Regression
Logistic Regression: Preliminaries

- Given: \(D = \{(x_i, y_i)\}_{i=1}^{n} \)
 \[x_i = [x_1, x_2, x_3, \ldots, x_d] \]
 \(y \in \{0, 1\} \)

- Let’s define:
 \[f(x; w) : \mathbb{R}^d \to \{0, 1\} \]
 \[f(x; w) = \begin{cases}
 1 & \text{if } w \cdot x \geq t \\
 0 & \text{if } w \cdot x < t
 \end{cases} \]

- Interpretation:
 \[\ln \left(\frac{\Pr (y = 1|x)}{\Pr (y = 0|x)} \right) = w \cdot x \]
 \[\ln \left(\frac{\Pr (y = 1|x)}{1 - \Pr (y = 1|x)} \right) = w \cdot x \]
Why log odds?

• Dot product alone would be unbounded (not a probability)
 • Solve using odds
• Empirically, we see diminishing returns
 • Solve using log

\[
\ln \left[\frac{\Pr (y = 1|x)}{1 - \Pr (y = 1|x)} \right] = w \cdot x
\]
Relation to the Logistic Function

- After some algebra:

 \[\Pr(y = 1|x) = \frac{e^{w \cdot x}}{1 + e^{w \cdot x}} \]

 \[\Pr(y = 0|x) = \frac{1}{1 + e^{w \cdot x}} \]

- The logistic function:

 \[f(z) = \frac{e^z}{e^z + 1} \]
Training an LR Classifier

- Maximize the conditional likelihood:
 \[\arg \max_w \prod_{i=1}^{n} \Pr(y_i|x_i, w) \]

- Define the objective in terms of conditional log likelihood:
 \[L(w) = \sum_{i=1}^{n} \ln \Pr(y_i|x_i, w) \]

- We know \(y \in \{0, 1\} \) so:
 \[\Pr(y|x, w) = \Pr(y = 1|x, w)^y [1 - \Pr(y = 0|x, w)]^{(1-y)} \]

- Substituting:
 \[L(w) = \sum_{i=1}^{n} \left(y_i \ln \Pr(y_i = 1|x_i, w) + (1 - y_i) \ln \Pr(y_i = 0|x_i, w) \right) \]
LR Classifier Update Rule

- Take the derivative:

\[L(w) = \sum_{i=1}^{n} \left(y_i \ln \Pr(y_i = 1|x_i, w) + (1 - y_i) \ln \Pr(y_i = 0|x_i, w) \right) \]

\[\frac{\partial}{\partial w} L(w) = \sum_{i=0}^{n} x_i \left(y_i - \Pr(y_i = 1|x_i, w) \right) \]

- General form for update rule:

\[w^{(t+1)} \leftarrow w^{(t)} + \gamma^{(t)} \nabla_w L(w^{(t)}) \]

\[\nabla L(w) = \begin{bmatrix} \frac{\partial L(w)}{\partial w_0}, \frac{\partial L(w)}{\partial w_1}, \ldots, \frac{\partial L(w)}{\partial w_d} \end{bmatrix} \]

- Final update rule:

\[w_i^{(t+1)} \leftarrow w_i^{(t)} + \gamma^{(t)} \sum_{j=0}^{n} x_{j,i} \left(y_j - \Pr(y_j = 1|x_j, w^{(t)}) \right) \]
Lots more details...

- **Overfitting**
 - Model tuned too tightly to training data
- **Regularization**
 - E.g. add sum of square weights to loss function (L2)
- **Different loss functions**
 - E.g. hinge, epsilon-insensitive
- **Evaluation**
 - Accuracy, precision, recall, F1, ...
 - Sound familiar?
- **Cross-validation**
MapReduce Implementation

\[\theta^{(t+1)} \leftarrow \theta^{(t)} - \gamma^{(t)} \frac{1}{n} \sum_{i=0}^{n} \nabla \ell(f(x_i; \theta^{(t)}), y_i) \]

iterate until convergence
Shortcomings

- MapReduce is bad at iterative algorithms
 - Hadoop has high job startup costs
 - Awkward to retain state across iterations
- High sensitivity to skew
 - Iteration speed bounded by slowest task
- Potentially poor cluster utilization
 - Must shuffle all data to a single reducer
- Some possible tradeoffs
 - Number of iterations vs. complexity of computation per iteration
 - E.g., L-BFGS: faster convergence, but more to compute
Scaling Optimization
Stochastic Gradient Descent
Gradient Descent

\[\theta(t+1) \leftarrow \theta(t) - \gamma(t) \frac{1}{n} \sum_{i=0}^{n} \nabla \ell(f(x_i; \theta(t)), y_i) \]

“batch” learning: update model after considering all training instances

Stochastic Gradient Descent (SGD)

\[\theta(t+1) \leftarrow \theta(t) - \gamma(t) \nabla \ell(f(x; \theta(t)), y) \]

“online” learning: update model after considering each (randomly-selected) training instance

“mini-batch” learning: compromise between batch and fully online

In practice... just as good!
Ensembles
Ensemble Learning

• Learn multiple models, combine results from different models to make prediction

• Why does it work?
 • If errors uncorrelated, multiple classifiers being wrong is less likely
 • Reduces the variance component of error

• A variety of different techniques:
 • Majority voting
 • Simple weighted voting:
 \[y = \arg\max_{y \in Y} \sum_{k=1}^{n} \alpha_k p_k(y|x) \]
 • Model averaging
Practical Notes

• Common implementation:
 • Train classifiers on different input partitions of the data
 • Embarrassingly parallel!
• Contrast with bagging
 • Samples chosen randomly with replacement
• Contrast with boosting
 • Shift weight toward samples with errors
Sentiment Analysis Case Study

Lin and Kolcz, SIGMOD 2012

- Binary polarity classification: {positive, negative} sentiment
 - Independently interesting task
 - Illustrates end-to-end flow
 - Use the “emoticon trick” to gather data

- Data
 - Test: 500k positive/500k negative tweets from 9/1/2011
 - Training: {1m, 10m, 100m} instances from before (50/50 split)

- Features: Sliding window byte-4grams

- Models:
 - Logistic regression with SGD (L2 regularization)
 - Ensembles of various sizes (simple weighted voting)
Ensembles with 10m instances better than 100m single classifier!

"for free"

Diminishing returns...
Rundown

• Ridge regression
 • MSE loss with L2 regularization
• LASSO
 • MSE loss with L1 regularization
• Random forest
 • Bagging, subsampled features
• Gradient boosting
 • Train new models on residuals
• Support vector machine
 • Hinge loss, L2 regularization
Scaling Stochastic Gradient Descent
(From Jeff Dean’s RecSys2014 Keynote)
Neural Networks
2012 Supervised Vision Model: “AlexNet”

- Softmax to predict object class
- Fully-connected layers (and trained w/ DropOut)
- Convolutional layers (same weights used at all spatial locations in layer)

~60M parameters

Basic architecture developed by Krizhevsky, Sutskever & Hinton
Won 2012 ImageNet challenge with 16.4% top-5 error rate
Vision models, 2014 edition: GoogLeNet

Module with 6 separate convolutional layers

24 layers deep!

No fully-connected layer, so only \(~6\text{M}\) parameters (but \(~2\text{B}\) floating point operations per example)

Developed by team of Google Researchers:
Won 2014 ImageNet challenge with 6.66\% top-5 error rate
Model Parallelism: Partition model across machines

Partition 1 Partition 2 Partition 3

Layer N
...
Layer 1
Layer 0
Data Parallelism:
Asynchronous Distributed Stochastic Gradient Descent

Parameter Server: \[p' = p + \Delta p \]
Staleness

Parameter Server

Model Workers

Data Shards

Too old! Ignore!

Very slow

$\Delta \rho$
Questions?