Search Engine Architecture

6. Link Analysis
Today’s Agenda

- Graph problems and representations
- Parallel breadth-first search
- PageRank
- Optimizing graph algorithms
What’s a graph?

- $G = (V,E)$, where
 - V represents the set of vertices (nodes)
 - E represents the set of edges (links)
 - Both vertices and edges may contain additional information
- Different types of graphs:
 - Directed vs. undirected edges
 - Presence or absence of cycles
- Graphs are everywhere:
 - Hyperlink structure of the web
 - Physical structure of computers on the Internet
 - Interstate highway system
 - Social networks

Some Graph Problems

- Finding shortest paths
 - Routing Internet traffic and UPS trucks
- Finding minimum spanning trees
 - Telco laying down fiber
- Finding Max Flow
 - Airline scheduling
- Identify “special” nodes and communities
 - Breaking up terrorist cells, spread of avian flu
- Bipartite matching
 - Monster.com, Match.com
- And of course... PageRank

Graphs and MapReduce

• A large class of graph algorithms involve:
 • Performing computations at each node: based on node features, edge features, and local link structure
 • Propagating computations: “traversing” the graph

• Key questions:
 • How do you represent graph data in MapReduce?
 • How do you traverse a graph in MapReduce?

Representing Graphs

• $G = (V, E)$

• Two common representations
 • Adjacency matrix
 • Adjacency list

Adjacency Matrices

Represent a graph as an $n \times n$ square matrix M

- $n = |V|$
- $M_{ij} = 1$ means a link from node i to j

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Adjacency Matrices: Critique

• Advantages:
 • Amenable to mathematical manipulation
 • Iteration over rows and columns corresponds to computations on outlinks and inlinks

• Disadvantages:
 • Lots of zeros for sparse matrices
 • Lots of wasted space

Adjacency Lists

Take adjacency matrices... and throw away all the zeros

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

1: 2, 4
2: 1, 3, 4
3: 1
4: 1, 3

Adjacency Lists: Critique

• Advantages:
 • Much more compact representation
 • Easy to compute over outlinks

• Disadvantages:
 • Much more difficult to compute over inlinks

Single-Source Shortest Path

- **Problem:** find shortest path from a source node to one or more target nodes
 - Shortest might also mean lowest weight or cost
- First, a refresher: Dijkstra’s Algorithm

Dijkstra’s Algorithm Example

Example from CLR
Single-Source Shortest Path

• **Problem:** find shortest path from a source node to one or more target nodes
 • Shortest might also mean lowest weight or cost
• Single processor machine: Dijkstra’s Algorithm
• MapReduce: parallel breadth-first search (BFS)

Finding the Shortest Path

• Consider simple case of equal edge weights
• Solution to the problem can be defined inductively
• Here’s the intuition:
 • Define: \(b \) is reachable from \(a \) if \(b \) is on adjacency list of \(a \)
 \[\text{DISTANCETo}(s) = 0 \]
 • For all nodes \(p \) reachable from \(s \),
 \[\text{DISTANCETo}(p) = 1 \]
 • For all nodes \(n \) reachable from some other set of nodes \(M \),
 \[\text{DISTANCETo}(n) = 1 + \min(\text{DISTANCETo}(m), m \in M) \]

Visualizing Parallel BFS
Source: Wikipedia (Wave)
Via Lin et al. Big Data Infrastructure, UMD Spring 2015.
From Intuition to Algorithm

• Data representation:
 • Key: node \(n \)
 • Value: \(d \) (distance from start), adjacency list (nodes reachable from \(n \))
 • Initialization: for all nodes except for start node, \(d = \infty \)

• Mapper:
 • \(\forall m \in \) adjacency list: emit \((m, d + 1)\)

• Sort/Shuffle
 • Groups distances by reachable nodes

• Reducer:
 • Selects minimum distance path for each reachable node
 • Additional bookkeeping needed to keep track of actual path

Multiple Iterations Needed

• Each MapReduce iteration advances the “frontier” by one hop
 • Subsequent iterations include more and more reachable nodes as frontier expands
 • Multiple iterations are needed to explore entire graph

• Preserving graph structure:
 • Problem: Where did the adjacency list go?
 • Solution: mapper emits (\(n\), adjacency list) as well

BFS Pseudo-Code

1: class Mapper
2: method Map(nid n, node N)
3: d ← N.DISTANCE
4: Emit(nid n, N) ▷ Pass along graph structure
5: for all nodeid m ∈ N.ADJACENCYLIST do
6: Emit(nid m, d + 1) ▷ Emit distances to reachable nodes

1: class Reducer
2: method Reduce(nid m, [d₁, d₂, ...])
3: d_{min} ← ∞
4: M ← ∅
5: for all d ∈ counts [d₁, d₂, ...] do
6: if IsNode(d) then
7: M ← d ▷ Recover graph structure
8: else if d < d_{min} then
9: d_{min} ← d ▷ Look for shorter distance
10: M.DISTANCE ← d_{min}
11: Emit(nid m, node M) ▷ Update shortest distance

Single Source: Weighted Edges

- Now add positive weights to the edges
 - Why can’t edge weights be negative?
- Simple change: add weight w for each edge in adjacency list
 - In mapper, emit $(m, d + w_p)$ instead of $(m, d + 1)$ for each node m
- That’s it?

Stopping Criterion

- How many iterations are needed in parallel BFS (positive edge weight case)?
- Convince yourself: when a node is first “discovered”, we’ve found the shortest path

Stopping Criterion

- How many iterations are needed in parallel BFS (positive edge weight case)?
- Convince yourself: when a node is first “discovered”, we’ve found the shortest path

Not true!

Comparison to Dijkstra

- Dijkstra’s algorithm is more efficient
 - At each step, only pursues edges from minimum-cost path inside frontier
- MapReduce explores all paths in parallel
 - Lots of “waste”
 - Useful work is only done at the “frontier”
- Why can’t we do better using MapReduce?

Additional Complexities

PageRank
Graphs and MapReduce

- A large class of graph algorithms involve:
 - Performing computations at each node: based on node features, edge features, and local link structure
 - Propagating computations: “traversing” the graph
- Generic recipe:
 - Represent graphs as adjacency lists
 - Perform local computations in mapper
 - Pass along partial results via outlinks, keyed by destination node
 - Perform aggregation in reducer on inlinks to a node
 - Iterate until convergence: controlled by external “driver”
 - Don’t forget to pass the graph structure between iterations

Random Walks Over the Web

- Random surfer model:
 - User starts at a random Web page
 - User randomly clicks on links, surfing from page to page
- PageRank
 - Characterizes the amount of time spent on any given page
 - Mathematically, a probability distribution over pages
- PageRank captures notions of page importance
 - Correspondence to human intuition?
 - One of thousands of features used in web search (query-independent)

PageRank: Defined

Given page x with inlinks $t_1...t_n$, where

- $C(t)$ is the out-degree of t
- α is probability of random jump
- N is the total number of nodes in the graph

\[
PR(x) = \alpha \left(\frac{1}{N} \right) + (1 - \alpha) \sum_{i=1}^{n} \frac{PR(t_i)}{C(t_i)}
\]

Computing PageRank

• Properties of PageRank
 • Can be computed iteratively
 • Effects at each iteration are local

• Sketch of algorithm:
 • Start with seed PR_i values
 • Each page distributes PR_i “credit” to all pages it links to
 • Each target page adds up “credit” from multiple in-bound links to compute PR_{i+1}
 • Iterate until values converge

Simplified PageRank

- First, tackle the simple case:
 - No random jump factor
 - No dangling nodes
- Then, factor in these complexities...
 - Why do we need the random jump?
 - Where do dangling nodes come from?

Sample PageRank Iteration (1)

Sample PageRank Iteration (2)

Map

Reduce

PageRank Pseudo-Code

1: class Mapper
2: method MAP(nid n, node N)
3: p ← N.PAGERANK/|N.ADJACENCYLIST|
4: Emit(nid n, N) ▶ Pass along graph structure
5: for all nodeid m ∈ N.ADJACENCYLIST do
6: Emit(nid m, p) ▶ Pass PageRank mass to neighbors

1: class Reducer
2: method REDUCE(nid m, [p₁, p₂, ...])
3: M ← ∅
4: for all p ∈ counts [p₁, p₂, ...] do
5: if IsNode(p) then
6: M ← p ▶ Recover graph structure
7: else
8: s ← s + p ▶ Sums incoming PageRank contributions
9: M.PAGERANK ← s
10: Emit(nid m, node M)

Complete PageRank

• Two additional complexities
 • What is the proper treatment of dangling nodes?
 • How do we factor in the random jump factor?
• Solution:
 • Second pass to redistribute “missing PageRank mass” and account for random jumps

\[p' = \alpha \left(\frac{1}{N} \right) + (1 - \alpha) \left(\frac{m}{N} + p \right) \]

• \(p \) is PageRank value from before, \(p' \) is updated PageRank value
• \(N \) is the number of nodes in the graph
• \(m \) is the missing PageRank mass
• Additional optimization: make it a single pass!

PageRank Convergence

- Alternative convergence criteria
 - Iterate until PageRank values don’t change
 - Iterate until PageRank rankings don’t change
 - Fixed number of iterations
- Convergence for web graphs?
 - Not a straightforward question
- Watch out for link spam:
 - Link farms
 - Spider traps
 - ...

Beyond PageRank

- Variations of PageRank
 - Weighted edges
 - Personalized PageRank
- Variants on graph random walks
 - Hubs and authorities (HITS)
 - SALSA

Applications

- Static prior for web ranking
- Identification of “special nodes” in a network
- Link recommendation
- Additional feature in any machine learning problem

Other Classes of Graph Algorithms

- Subgraph pattern matching
- Computing simple graph statistics
 - Degree vertex distributions
- Computing more complex graph statistics
 - Clustering coefficients
 - Counting triangles

Iterative Algorithms
MapReduce Sucks

- Needless graph shuffling
- Checkpointing at each iteration

MapReduce sucks at iterative algorithms

- Alternative programming models (later)
- Easy fixes (now)

In-Mapper Combining

- Use combiners
 - Perform local aggregation on map output
 - Downside: intermediate data is still materialized
- Better: in-mapper combining
 - Preserve state across multiple map calls, aggregate messages in buffer, emit buffer contents at end
 - Downside: requires memory management

Better Partitioning

• Default: hash partitioning
 • Randomly assign nodes to partitions

• Observation: many graphs exhibit local structure
 • E.g., communities in social networks
 • Better partitioning creates more opportunities for local aggregation

• Unfortunately, partitioning is hard!
 • Sometimes, chicken-and-egg...
 • But cheap heuristics sometimes available
 • For webgraphs: range partition on domain-sorted URLs

Schimmy Design Pattern

- Basic implementation contains two dataflows:
 - Messages (actual computations)
 - Graph structure (“bookkeeping”)
- Schimmy: separate the two dataflows, shuffle only the messages
- Basic idea: merge join between graph structure and messages

Schimmy Design Pattern

- Basic implementation contains two dataflows:
 - Messages (actual computations)
 - Graph structure (“bookkeeping”)
- Schimmy: separate the two dataflows, shuffle only the messages
- Basic idea: merge join between graph structure and messages

Do the Schimmy!

- Schimmy = reduce side parallel merge join between graph structure and messages
 - Consistent partitioning between input and intermediate data
 - Mappers emit only messages (actual computation)
 -Reducers read graph structure directly from HDFS

Pregel
What makes graph processing hard?

- Lessons learned so far:
 - Partition
 - Replicate
 - Reduce cross-partition communication
- What makes MapReduce “work”?

Characteristics of Graph Algorithms

• What are some common features of graph algorithms?
 • Graph traversals
 • Computations involving vertices and their neighbors
 • Passing information along graph edges

• What’s the obvious idea?
 • Keep “neighborhoods” together!

Simple Partitioning Techniques

- Hash partitioning
- Range partitioning on some underlying linearization
 - Web pages: lexicographic sort of domain-reversed URLs
 - Social networks: sort by demographic characteristics

Country Structure in Facebook

Ugander et al. (2011) The Anatomy of the Facebook Social Graph.

Analysis of 721 million active users (May 2011)

54 countries w/ >1m active users, >50% penetration
What makes graph processing hard?

• It’s tough to apply our “usual tricks”:
 • Partition
 • Replicate
 • Reduce cross-partition communication

Pregel: Computational Model

- Based on Bulk Synchronous Parallel (BSP)
 - Computational units encoded in a directed graph
 - Computation proceeds in a series of supersteps
 - Message passing architecture
- Each vertex, at each superstep:
 - Receives messages directed at it from previous superstep
 - Executes a user-defined function (modifying state)
 - Emits messages to other vertices (for the next superstep)
- Termination:
 - A vertex can choose to deactivate itself
 - Is “woken up” if new messages received
 - Computation halts when all vertices are inactive

Pregel

superstep t

superstep $t+1$

superstep $t+2$

Pregel: Implementation

- Master-Slave architecture
 - Vertices are hash partitioned (by default) and assigned to workers
 - Everything happens in memory
- Processing cycle:
 - Master tells all workers to advance a single superstep
 - Worker delivers messages from previous superstep, executing vertex computation
 - Messages sent asynchronously (in batches)
 - Worker notifies master of number of active vertices
- Fault tolerance
 - Checkpointing
 - Heartbeat/revert

Pregel: PageRank

class PageRankVertex : public Vertex<double, void, double> {
public:
 virtual void Compute(MessageIterator* msgs) {
 if (superstep() >= 1) {
 double sum = 0;
 for (; !msgs->Done(); msgs->Next())
 sum += msgs->Value();
 *MutableValue() = 0.15 / NumVertices() + 0.85 * sum;
 }

 if (superstep() < 30) {
 const int64 n = GetOutEdgeIterator().size();
 SendMessageToAllNeighbors(GetValue() / n);
 } else {
 VoteToHalt();
 }
 }
};

Questions?