1. [6 points] Circle the correct answer among the choices given. If you circle more than one answer, you will lose the grade of the corresponding question.

(A) As the technology advances, which of the following type of algorithms can become feasible to be used?
 a. Undecidable b. Unsolvable c. Intractable d. All of them

(B) The following MIPS instruction
 \textit{bne r1, r2, loop} (that is: branch to loop if r1 \neq r2) is:
 (a) encoded as R-format instruction (b) encoded as I-format instruction
 (c) encoded as J-format instruction (d) none of the above

(C) The executable is generated by:
 a. compiler b. assembler c. linker d. loader e. the programmer

(D) The ALU is a:
 a. sequential circuit b. combinational circuit
 c. we can build it either ways e. both sequential and combinational

(E) The size of MIR (Micro Instruction Register) of the control unit depends on:
 a. IR b. PC c. the data path d. The memory system

(F) When a MIPS \textit{jump} to a backward instruction is executed:
 (a) A value is added to the PC.
 (b) A value is subtracted from the PC
 (c) A value is loaded into the PC
 (d) The PC is only incremented by 4
 (e) None of the above
2. [2 points] Can you build a device that, logically, behaves like an OR gate from only AND and NOT gates? If so, do so (just for the case where AND and OR gates have only two inputs). If not, explain why not.

3. For the following logic circuit:

![Logic Circuit Diagram]

a. [4 points] Draw the truth table

b. [1 point] Is this function sequential or combinational? Why?
4. For the datapath shown below (assume the register file can submit the contents of two registers at the same time):
 a. [1 point] Can we get rid of AOR? Justify

 b. [2 points] Write 5 microinstructions that can be executed in parallel

 c. [4 points] Suppose we invented the following instruction: \texttt{stw r1, offset(r2)}
 This instruction does the following:
 - Copy the value in register r1 to memory location
 \{SE(imm) + register r2\} (that is: M[SE(imm)+ r2] = r1)
 - Decrement the register r2 by the value of r1 (that is, r2 = r2 – r1)

 Write the microinstructions needed to execute the above instruction (no need to write fetch phase). Optimize as much as you can.