Named Entities, Named Entity Tagging and Machine Learning

Adam Meyers
New York University
Outline

• What is a Named Entity?
• HMM NE tagging
• Inferences based on less Information
• Combining Evidence: Maximum Entropy
What is a Named Entity?

• Definition 1: A single or multi-word expression that meets any of the following criteria:
 – is a proper noun phrase phrase
 • *Adam L. Meyers, PhD.*
 • *Professor Meyers*
 • *New York University*
 – is a proper adjective phrase, e.g., *Latin American*
 – has external distribution of NP, but different internal structure
 • January 3, 2012
 • Five Hundred Thirty
 • waffles@cs.nyu.edu

• Definition 2: A class of words and multi-word expressions defined by specifications tuned to information extraction tasks (can conflict with 1 by including “normal” nouns)
What is a Proper Noun (Phrase)?

- Definition: A name of something that is (in English) capitalized even in non-initial position, typically representing unique individual objects. Proper nouns don't typically take determiners.

- What's unique?
 - Is *Adam Meyers* a proper NP even though there are more than one person with that name?
 - Are *Thursday* or *September 3* proper NPs even though there are more than one instance of these days?
 - What about car models such as the *Fiesta* which represent a type of objects rather than a specific object.
 - Color terms, e.g., *azure, salmon, peach,* … identify unique types, just like car models, yet they are not technically proper nouns

- Capitalization can be inconsistent
 - fields of study (like *computer science*) are capitalized inconsistently
 - different languages use different capitalization conventions
Internal Structure of Person Names

- NP → First_Name
- NP → (TitleP)?(First_Name)? (Middle_Name|Initial)?Last_Name (Post_Honorific)?
- TitleP →(Mod)* Title
- Mod → vice | assistant | assist. | deputy, …
- Title → Mr. | Ms. | Mrs. | Miss | Master | Dr. | President, …
- First_Name → Adam | Jenny | Joshua | Nurit | Giancarlo | Ralph | Cristina | Satoshi | Heng | Xiang | Shasha | Wei | Ang | Bonan | …
- Last_Name → Meyers | Matuk | Lee | Grishman | Mota | Sekine | Ji | Li | Liao | Xu | Min | …
- Post_Honorific → Esq. | Jr. | Sr. | I | II | III | PhD. | …
- Note: specifications vary about whether titles and Post_Honorifics are or are not part of the name (ACE excludes titles)
Structure of Organization/Location/… Names

- Many Different Structures Possible
 - Advanced Micro Devices (ORG, normal NP)
 - Council of Indian Nations (ORG, normal NP)
 - Yucatan Peninsula (LOC, normal NP)
 - United States of America (GPE, normal NP)
 - Ford Motors, Inc. (ORG, NP plus right modifier)
 - Alcoholics Anonymous (ORG, NP plus right modifier)
 - Head, Heart, Hands, Health (list of nouns)
 - Alfac (ORG, newly coined single word)
 - Addis Abba (GPE, two foreign words)
 - Merrill Lynch (ORG, Person name structure)
 - Nobody Can Beat the Wiz (ORG, normal S)
 - Hi Ho (SONG, idiom)

- Unambiguous (like fixed phrases)
 - Name of ORG: Advanced Micro Devices (Advanced modifies Devices)
 - [Advanced biology] textbook vs. Advanced [biology textbook]
Some Other Entities

- Numbers and Quantities
 - Twenty Five Thousand, Five Hundred Fifty Eight
 - $200 million
- Times and Dates (not always names)
 - January 3, 2011
 - Ten o'clock
 - 10:30
 - last Thursday
 - St. Valentine's Day
- Addresses (street, email, url, …)
 - 1313 Mockingbird Lane, New York, NY 10003
 - hm1313@cs.nyu.edu
 - http://nlp.cs.nyu.edu/people/meyers.html
ACE Named Entities

• ACE Specifications online (name mentions only)
• GPE – location with a government
 – city, state, county, country
 – people, physical location, government
• Location – geographical location
 – lake, mountain, ..
• Facility – man-made structure
 – bridge, street, building
• Person – person or group of people
• Organization – group of people with structure
 – commercial, government, club, non-profit
The ACE Task

- 2000-2008 Government-sponsored shared tasks (or bake-offs)
- Full Entity task
 - Annotation of mentions
 - Names, common noun, pronoun phrases that fall into the semantic classes (ultimately a superset of previous slide)
 - Coreference
 - Entity = Sets of mentions that refer to the same thing
- Other tasks
 - Relations: between two entities
 - located, part-whole, family, employment, ...
 - Events: entities are arguments of predicates
 - Movement, attack, be_born, marry, die, business_merge, declare_bankruptcy, ...
- Languages: English, Chinese, Arabic
Some Historical Notes

• Before ACE, NEs were introduced in 1995 as part of the MUC6 government task

• The ACE task and several other NE tasks extended MUC6 in various ways.

• Other NE tasks, both government and SIG sponsored:
 – CONLL 2002-2003: English, Dutch, German, Spanish
 – IREX 1998-1999: Japanese (co-chairs: Sekine at NYU and Isahara at CRL)
 – SIGHan 2006: Chinese
 – TAC/KBP 2009 – Present: English (NIST)
Markov Chains (review)

- Markov chain is a WFSA in which an input string uniquely determine path through the Automaton
 - $Q =$ set of states: q_0 (start state), \ldots, q_F (final state)
 - q_0 and q_F are special in that they are not associated with observations
 - $A =$ transition probability matrix A, each $a_{i,j}$ representing the probability of moving from state i to state j, such that $\sum_{j=1}^{n} a_{i,j} = 1 \forall i$

- Assumptions
 - In an N-order markov model, a particular state depends on the previous N states. So far we have focused on first-order models (bigrams)
 - All outgoing edges from a node sum to 1
 - $\sum_{j=1}^{n} a_{i,j} = 1 \forall i$

- Alternative (equivalent) formulation regarding initial/final states
 - Substitute transition probabilities from initial states and from final states with probabilities that particular states will be initial or final.
HMM (review)

- Hidden Markov model combines hidden events (indirect predictions) with Markov chains (transition probabilities are called **prior probabilities**)
- Adds following 2 things to Markov chains
 - $O_1 \ldots O_T$ – a sequence of T observations
 - $B=b_i(O_t)$ – observation **likelihoods** – each likelihood that observation O_t will occur, given state i
- Additional Assumption: Likelihoods depend only on the states in which they occur
Named Entity Task

- Similar to POS tagging and Chunking
- Typical manual markup
 - `<LABEL> … </LABEL>` (label = PER, GPE, ...)
 - States in HMM could correspond to:
 - Being inside constituents of each of the labeled types and being outside.
- Example POS/Chunking-like tagset:
 - B_PER, I_PER, B_GPE, I_GPE, B_ORG, I_ORG, B_LOC, I_LOC, … , NOT_NAME
 - A popular way to label transitions for HMM (and other) NE taggers.
Nymble: an HMM NE tagger

- NEs: organization, person, location, time, date, percent, money
- Bikel, et. al. (1996) – basis of next few slides
- Name Classes (NC): NE classes + other
- Begin and Internal tags are implied
 - John/PER Smith/PER /OTHER Mary/PER Smith/PER
 - No B-PER tag is mentioned in paper, but priors for initial words in a PER sequence are different than for subsequent elements of PER
- HMM using Viterbi algorithm
- Each word is an ordered pair: <word, features>
 - True/False features involving upper/lowercase/capitalization, digit/letter/punctuation, 1st word, etc.
 - <John <False,...,True,True,...>> Only firstWord and initCap are True
 - <Smith <False,...,False,True,...>> Only initCap is True
 - <, <False,...,True,...>> Only Other is True
- Includes Backoff Model:
 - different (weighted) levels of prior probabilities are combined
 - bigrams, NCs, words, features, …
Nymbol – Probabilities Used

• Probability assumed to consist of:
 – Likelihood (of the word/prob sequence) X Priors (transitions between states)

• Probability of Tag Sequence NC given Input Token Sequence W

 \[
 Pr(\text{NC}|W) = \frac{Pr(W|\text{NC}) \times Pr(\text{NC})}{Pr(W)} \quad \# \text{Bayes Rule}
 \]

 \[
 \approx \frac{Pr(W|\text{NC})}{Pr(W)} \times Pr(\text{NC}) \approx Pr(W|\text{NC}) \times Pr(\text{NC}) \quad \# \text{Pr(W) ignored (same for any tag seqs)}
 \]

 \[
 Pr(W|\text{NC}) = \text{Likelihood} \quad Pr(\text{NC}) = \text{Prior}
 \]

• Likelihood Approximated as based only on its NC (as with HMM)

 \[
 Pr(W|\text{NC}) \approx \prod_{i=1}^{n} P(w_i|\text{nc}_i)
 \]

 – Backoff: withhold 10–20% of training data for OOV model

 • Base probabilities above on words in this subcorpus, but not in the regular training corpus.

 • Assume words found only in the held-out (10-20%) are “unknown words” and calculate all of the above probabilities based on the occurrence of these words in this subcorpus.

• Prior calculated differently for different parts of the sequence

 – Details on next Slide
Nymbol – Prior Probabilities

- Prior for 1st word of a NC: \(Pr(\text{NC}|\text{NC}_{-1}, w_{-1}) \times Pr(<w,f>_{\text{first}}|\text{NC}, \text{NC}_{-1}) \)
 - \(Pr(\text{NC}|\text{NC}_{-1}, w_{-1}) \) # e.g., Mr. precedes B-PER
 - \(Pr(<w,f>_{\text{first}}|\text{NC}, \text{NC}_{-1}) \) # e.g., O precedes capitalized B-PER

- Prior for subsequent words of NC:
 - \(Pr(<w,f>|<w.f>_{-1}, \text{NC}) \) # sequences of same/diff class

- Probability that the current word ends an NC:
 - \(Pr(+\text{end+}, \text{other} |<w,f>_{\text{final}}, \text{NC}) \)
Nymbol – Backoff for Prior Probabilities

• **Name Class Bigrams**

 \[Pr(\text{NC}|\text{NC}_{-1}, w_{-1}) \subset Pr(\text{NC}|\text{NC}_{-1}) \subset Pr(\text{NC}) \ldots \frac{1}{\text{number of NCs}} \]

• **First Word Bigrams**

 \[Pr(<w, f>_\text{first}|\text{NC}, \text{NC}_{-1}) \subset Pr(<w, f>|<+ \text{begin}+, \text{other}>, \text{NC}) \subset \]
 \[Pr(<w, f>|\text{NC}) \subset \ldots Pr(w|\text{NC}) \times Pr(f|\text{NC}) \subset \frac{1}{\text{vocab_size}} \times \frac{1}{\text{number_features}} \]

• **Non-First Word Bigrams**

 \[Pr(<w, f>|<w, f>_{-1}, \text{NC}) \subset Pr(<w, f>|\text{NC}) \subset \]
 \[Pr(w|\text{NC}) \times Pr(f|\text{NC}) \ldots \subset \frac{1}{\text{vocab_size}} \times \frac{1}{\text{number_features}} \]
Smoothing (in Nymbol)

- Order Models by amount of Info: $M_1 \subset M_2 \subset M_3 \subset M_4 \ldots$
- Apply weight Λ to the back-off model and $1 - \Lambda$ to the initial model
 - This is called smoothing
- Λ based on relative sample sizes of M and M'
 - In model M, $\text{Pr}(X|Y)$ is based on the count of Y (more info)
 - In model M', $\text{Pr}(X|Y')$ is based on the count of Y' (backoff model)
 - $c(Y') > c(Y)$ e.g., suppose $Y = \text{NC}_{-1}, w_{-1}$ and $Y' = \text{NC}_{-1}$
- Λ favors backing off to more frequent and less diverse models

 \[\lambda = \left(1 - \frac{c(Y)}{c(Y')}\right) \times \frac{1}{1+ \frac{\text{unique_outcomes}(Y')}{c(Y')}} \]

 - 1^{st} factor: Positive if $Y' > Y$ and increases as Y' increases
 - 2^{nd} factor: $.5$ if Y' is maximally diverse and approaches 1 as the number of diverse outcomes decreases to 1
If Lots of Evidence, Do Machine Learning

• Suppose you want to combine lots of features together and take advantage of any correlation to predict outcomes
• Methods for doing this fall into the area called machine learning
• These methods include: Maximum Entropy, Support Vector Machines, Naive Bayes, Conditional Random Fields, Neural Networks, and several others.
• Supervised or Unsupervised
 – **Supervised**: Methods in which statistical models are “trained” based on manually annotated text.
 • We will focus on these.
 – **Unsupervised**: Methods in which statistical models are based on assumptions about un-annotated data
High Level Description of ML

• Input:
 – Correctly Annotated Data
 • Training Corpus
 • Test or Development Corpus
 – An observable set of features

• Machine Learning Algorithms
 – Methods for combining evidence and making predictions

• Tookits for Multiple Machine Learning Algorithms
 – JAVA
 • WEKA: http://www.cs.waikato.ac.nz/ml/weka/
 • MALLET: http://mallet.cs.umass.edu/
 – Python
 • NLTK's classification package (Chapter 6)
 • Also: http://scikit-learn.org/ [I know less about this one]
Making and Tuning ML Systems

• Experiment with Different ML Algorithms
 – Use the same set of features
 – Toolkits make switching easy
 – May help to understand some differences
 • Speed/complexity → limit size of training data
 • Assumptions about Feature Independence
 – Tweaking features, making new algorithms and making new more efficient versions of current ML algorithms

• Experiment with Different Sets of Features
 – Keep algorithm fixed
 – Vary numbers of features
 – Possible strategy: use as many features as possible
 • When these systems work, It cannot always be explained why
 – Possible strategy: use features that can be expected to make a prediction

• Possible to make an excellent ML system while treating algorithms as black boxes
Log Linear Classifiers (Important for Understanding Maximum Entropy)

• A log linear classifier
 – Extract features (real number) from input
 – Multiply each feature by a weight
 – Use this total as an exponent

\[p(c|x) = \frac{1}{Z} \times e^{\sum w_i f_i} \]

• \(c \) = class, \(x \) = observation, \(Z \) normalizing factor, \(w_i \) and \(f_i \) are features and weights (both depending on \(c \))
• \(Z \) makes all probabilities sum to 1
• \(e \) = mathematical constant, approximately 2.718
Linear Regression

- Tasks that map input features to output
 - linear regression (real numbers)
 - linear classifier (discrete classes)

- Combining feature weights

 - \(y = \sum_{i=0}^{N} w_i \times f_i \) \textit{assuming} \(f_0 = 1 \)
 - Expressed compactly in dot product notation: \(y = w \cdot f \)

- Regression line \((y = mx + b) \) line that fits data (for features \(x, y \))
 - \(m \) that minimizes cost of difference of predicted \(y_{\text{pred}}^{(j)} \) vs observed \(y_{\text{obs}}^{(j)} \)
 - \(y_{\text{pred}}^{(j)} = \sum_{i=0}^{M} w_i \times f_i^{(j)} \)
 - \(\text{cost} (W) = \sum_{j=0}^{M} (y_{\text{pred}}^{(j)} - y_{\text{obs}}^{(j)})^2 \)
 - Normalize cost by squaring, not absolute value
 - Outliers have an effect, adding absolute values would allow them to be ignored

- Deriving Weights (proof/implementation omitted)
 - Let \(M = \) a matrix: observations = columns, features = rows
 - Let \(v = \) a vector of predicted values
 - \(W = (M^T \cdot M)^{-1} \cdot M^T \cdot \tilde{v} \)
Logistic Regression

- If we assume binary values (true|false or 1|0)
 - \[p(y=\text{true}|x) = \frac{e^{w \cdot f}}{1+e^{w \cdot f}} \text{ and } p(y=\text{false}|x) = \frac{e^{-w \cdot f}}{1+e^{-w \cdot f}} \]
 - The dot product of features:
 - \[w \cdot f = \ln \left(\frac{p(\text{true})}{p(\text{false})} \right) \]
 - A number between positive and negative infinity
 - Our observation should be labeled true if:
 - \[p(\text{true}|x) > p(\text{false}|x) \]
 - Or if \[w \cdot f = \ln \left(\frac{p(\text{true})}{p(\text{false})} \right) > 0 \]
 - This equation is the hyperplane dividing the space of features into 2 predicted outcomes.
 - View features as dimensions for Cartesian Geometry
 - Learning these weights will not be covered here
Maximum Entropy

• Multinominal logistic regression: generalization of logistic regression to cover more than 2 classes, aka, Maximum Entropy

• Features have 2 values: 1 (True) or 0 (False)

• Linear regression for classes $C = \{c_1, \ldots, c_C\}$

$$p(c|x) = \frac{1}{Z} \times e^{\sum_i w_i f_i}$$

$$Z = \sum_{c' \in C} e^{\sum_{i=0}^{N} w_{c'_i} f_i}$$

$$p(c|x) = \frac{\sum_{i=0}^{N} w_{ci} f_i(c,x)}{\sum_{c' \in C} \sum_{i=0}^{N} w_{c'_i} f_i(c',x)}$$
Maximum Entropy 2

- For each observation x and class c, we can find the probability of c given x:
 \[
 p(c | x) = \frac{\sum_{i=0}^{N} w_{ci} f_i(c, x)}{\sum_{c' \in C} e^{\sum_{i=0}^{N} w_{c'i} f_i(c', x)}}
 \]

- We can choose the most probable classification:
 \[
 \hat{c} = \arg \max_{c \in C} p(c | x)
 \]

- Or the most probable sequence of classifications as in a MEMM (Maximum Entropy Markov Model)

- Principle of Maximum Entropy: the principle best representing the current state of knowledge is the principle consistent with the data that has the highest entropy (level of uncertainty)
MEMM

• Most probable tag set T given the word sequence W
 \[\hat{T} = \arg\max_T P(T|W) \]

• Prob of states $Q = q_1, \ldots, q_n$ given observations $O = o_1, \ldots, o_n$ when MEMM is simulating an HMM:
 \[P(Q|O) = \prod_{i=1}^{n} P(q_i|q_{i-1}, o_i) = \prod_{i=1}^{n} P(o_i|q_i) \times \prod_{i=1}^{n} P(q_i|q_{i-1}) \]

• MEMMs can and do incorporate more features.
 – HMM features, capitalization features, Nymbol-like features, prefixes, suffixes, letter combinations (which may indicate word origin), etc.

• Other “Machine Learning” paradigms: Baysean networks, Support Vector Machines, Perceptron, ...
Readings

• J & M Chapter 6
• NLTK – Sections 6 and 7.5
• ACE Named Entity Specifications
 – Read First 3 sections
• Bikel, et. al. (1997). *Nymble: a High-Performance Learning Name-finder*. In 5th Conference on Applied NLP
HW Assignment 6

- TBA