Comparing Word Occurrences across Documents: Information Retrieval, Terminology Extraction, etc.

Adam Meyers
New York University
2016
Outline

• Classifying Documents
 – Viewing “subject” of a document as a function of the set of words contained in the document
 – Similar documents → similar word distribution

• Search Query
 – Find document that is similar to query

• Terminology Extraction
 – Find words and word sequences that are significant, i.e., are valid search terms

• Other areas:
 – Cluster “similar documents”: topic modeling, sublanguage identification, …
Ad Hoc Information Retrieval

- Model of document = unordered set of terms contained in that document (ignore word order)
 - Term = word, bigram, trigram, noun group, or other small unit of consecutive items
- Query = user input, typically a set of terms
- Collection = set of documents that system
- Goal find documents that are “closest” to query
Vector Model

- Model documents and queries as vectors
- Feature values filled by the weight of terms
 - Values also called dimensions
- Example:
 - Terms: potato chip, chicken, sesame seed, coconut milk
 - Vector for query about Thai soups \(\vec{S} = (0, 20, 2, 100) \)
 - Vector for chicken and coconut soup recipe
 \[\vec{S} = (0, 40, 0, 100) \]
 - Vector for chicken noodle soup recipe \(\vec{S} = (0, 20, 0, 0) \)
- IR task: find documents that most closely “match” query
 - Matching via similarity metric defined on pairs of vectors
- Weights and Similarity Scores need to be defined
TFIDF = Common Weight for Vector

- Term Frequency – number of times term t occurs in document
- Inverse Document Frequency: Reciprocal of portion of large document set that contain term t, normalized with log function:
 \[
 \log\left(\frac{Number\text{OfDocuments}}{Number\text{OfDocumentsContaining}(t)}\right)
 \]
- TFIDF$(t) = TF(t) \times IDF(t)$
 - Scores terms highly that occur frequently in a document or query
 - Scores terms highly that are infrequent in collection
Example: *coconut milk* vs. *tablespoon*

- **coconut milk**
 - occurs ~ 3 times in chicken and coconut soup recipe
 - Term frequency = 3
 - occurs in 4 out of 10,000 documents in collection
 - inverse document frequency = \(\log(10000/4) = \log(2500) = 7.82 \)
 - TFIDF = \(3 \times 7.82 = 23.46 \)

- **tablespoon**
 - occurs 4 times in chicken and coconut soup recipe
 - Term frequency = 4
 - occurs in 1200 out of 10,000 documents in corpus
 - inverse document frequency = \(\log(10000/1200) = \log(8.33) = 2.12 \)
 - TFIDF = \(4 \times 2.12 = 8.48 \)

- **coconut milk** is more highly weighted for Thai Soup recipes than **tablespoon**

- Note: Suitability of query term may depend on the nature of the collection
 - Is this a collection of recipes? – **tablespoon** not good search term
 - Is collection diverse: instructions, news, …? – tablespoon may be good search term
Cosine Similarity: Common Similarity Score

\[
\text{Similarity}(A, B) = \frac{\sum_i a_i \times b_i}{\sqrt{\sum_i a_i^2 \times \sum_i b_i^2}}
\]

- Cosine of the Angle Between the Vectors
- Numerator is Dot Product, Denominator is a normalizing factor, based on lengths of vectors
- If a query is A and a document is B
 - Cosine similarity high if values of a and b are similar
Example

- Vectors have values corresponding to terms:
 - potato chip, chicken, sesame seed, coconut milk, ground beef

- 2 Queries
 - Q1 chicken, coconut milk: (0.5, 0.5, 0)
 - Q2 ground beef, potato chip: (4.0, 0, 0.7)

- 2 Documents
 - D1 Chicken and Coconut Soup Recipe: (0.7, 0.9, 0)
 - D2 Hamburger Recipe: (3.0, 0.2, 0.9)

- Cosign similarities
 -
<table>
<thead>
<tr>
<th></th>
<th>Q1</th>
<th>Q2</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>99.2</td>
<td>0</td>
</tr>
<tr>
<td>D2</td>
<td>0</td>
<td>95.9</td>
</tr>
</tbody>
</table>
Other Factors

- Many more terms (possibly thousands) represented in each vector
- More weights, normalizations, etc.
- Other similarity measures and weighting functions
- Lists of “stop words”, e.g., the, a, in, to, does, …
- Stemming procedures that consider some terms to be the same, e.g., [cat, cats], [analyze, analyzes, analyzed, analysis, analyse,...]
- Identifying other similar words, e.g., synonyms
 – query expansion, term clustering, ...
- Systems identify word sequences as terms: N-grams or chunking
Evaluation of Doc Extraction

• Output = A Ranked List of Documents
 – Some high-ranked errors “worse” than low-ranked
 – Ranking makes relevant/irrelevant distinction subtle
 – Mean Average Precision (MAP): average precision up to some cutoff (in terms of some ranking number, some recall number, etc.)

• Too Expensive to Create Gold Standard Manually
 – Collections can be millions or billions of documents
 – Precision can be approximated by taking samples of the text or evaluating the top N ranked terms manually.
 – Recall can also be approximated by some sort of sampling, e.g., only manually evaluating a subset of the collection

• Precision/Recall tradeoff curves based on numbers in the ranking
 – Typically, precision goes down and recall goes up as more documents in the ranking are considered
Mean Average Precision

• Computer precision at several intervals and average. Intervals can be based on rank numbers (e.g., 1-10, 11-20, etc.) or recall levels (e.g., 1-10%, 11-20%, etc.)

• Example of MAP for 1 query:
 – 100% precision at 10% recall; 70% at 20% recall; 50% at 30% recall
 – MAP at 30% recall with 10% intervals = average(1,.7,.5) = .73

• MAP for a set of queries is the average of MAP scores.
Sample Precision/Recall Tradeoff Based on Number of Search Results
Final Remarks about Document Retrieval

- TFIDF weighting + Cosine similarity
 - standard in IR document retrieval for over 50 years

- Web Search Engines
 - use these methods to identify relevant documents
 - they use other metrics, e.g., PageRank, to rank documents by their “importance”

- Some areas of Opinion/Sentiment Extraction
 - Similar methods applied to differentiating positive/negative opinions in documents
 - More Difficult
 - Same terms linked to positive/negative in different contexts
 - low, high, small, large, thin, thick, visible, loud, soft, …
 - high/low quality, high/low interest, high/low resolution
Terminology Talk

• Do Terminology Talk Now
Homework

• Jurafsky and Martin Chapter 23.1
• Meyers, et. al. 2015 paper (optional)
 – Code Available from github:
 • https://github.com/AdamMeyers/The_Termolator
 • https://github.com/ivanhe/termolator/
• Information Retrieval programming assignment:
 – TBA
 – Due March 17, 2016