The Soul of Dynamic Programming Formulations and Implementations

Bowen Yu

March 1, 16
Special Topic for Algorithmic Problem Solving
What is DP all about

- Advanced technique? 😊
- Transition Function
- Memoization
An example that everyone uses

- Calculate the Fibonacci numbers
- \(F(i) = F(i-1) + F(i-2) \)

```c
30  int fib(int i) {
31      if (i <= 1) return i;
32      return fib(i - 1) + fib(i - 2);
33  }
```
We know this is slow
Optimization?

• No need to compute a same value more than once

```c
int memo[MAXN];
int fib(int i) {
    if (memo[i] != -1) return memo[i];
    if (i <= 1) return memo[i] = i;
    return memo[i] = fib(i - 1) + fib(i - 2);
}
```
• Why the -1’s?

```c
int fib[MAXN];

void allFibs() {
    fib[0] = 0;
    fib[1] = 1;
    for (int i = 2; i < MAXN; i++) {
        fib[i] = fib[i - 1] + fib[i - 2];
    }
}
```
So-called top-down and bottom-up

- **Top-down:**
 - Derive the DP entry dependencies
 - Memoize and compute recursively

- **Bottom-up:**
 - Compute values in specific order
 - No memoization involved

```c
int memo[MAXN];
int fib(int i) {
    if (memo[i] != -1) return memo[i];
    if (i <= 1) return memo[i] = i;
    return memo[i] = fib(i - 1) + fib(i - 2);
}
```

```c
int fib[MAXN];
void allFibs() {
    fib[0] = 0;
    fib[1] = 1;
    for (int i = 2; i < MAXN; i++) {
        fib[i] = fib[i - 1] + fib[i - 2];
    }
}
```
Two different DPs?

• Not really.

• They are actually the same computation, as they have exactly the same transitions $F(i) = F(i-1) + F(i-2)$.

• We need to get to the soul of DP to actually see them unified.
Revisiting DP

- **State** – an entry of some value of your interest
- **Transition** – relations between the states
- **Order** – how states get computed
Fibonacci Sequence

- **State**
 - $\text{Fib}(i)$

- **Transition**
 - $\text{Fib}(i) = \text{Fib}(i - 1) + \text{Fib}(i - 2)$

- **Order?**
 - We always have larger Fibs depending on smaller Fibs.
 - Therefore, we can compute smaller Fibs first before computing larger Fibs.
Thinking on a graph

- This is a **Directed Acyclic Graph (DAG)**
How DAG works?

• We can always find a **topological order** of a DAG.

• The states on the graph can be computed in this topo order, so that when a state is being computed, its dependencies would have already been computed before.

• A DP must have a corresponding DAG (most of the time implicit), otherwise we cannot find a valid order for computation.
Counting Problem

• Given a set of \textbf{N distinct positive} integers: \(v_1, v_2, \ldots, v_N\)

• How many ways can we compose an \textbf{ordered list} with sum \(S\), by choosing the values from the set?

 (Each value can be chosen multiple times)

• For the discussion purpose, today we:
 – assume all integers values in this lecture are reasonably small so that they fit well in the memory, e.g. in this case \(N \leq 20, v_i \leq 100\).
 – ignore integer overflows, which are typically handled by modulo arithmetic
Counting Problem

• **State**
 – \(f(S) \): the number of ways we can compose sum \(S \)

• **Transition**
 – \(f(s) = \sum_i f(s - v_i) \)

• **Order**
 – In increasing \(S \)
Counting Problem – DAG (top)

S

S1 = S – v1

S11 = S1 – v1

S12 = S1 – v2

S21 = S2 – v1

S2 = S – v2

S22 = S2 – v2

S31 = S2 – v1

Sn = S – vn

S13 = S1 – v3

…

…
Counting Problem – DAG (bottom)

\[
\begin{align*}
S_1 &= v_1 \\
S_2 &= v_2 \\
S_{11} &= v_1 + v_1 \\
S_{12} &= v_1 + v_2 \\
S_{21} &= v_2 + v_1 \\
S_n &= v_n \\
S &= 0
\end{align*}
\]
Two implementations

• Top-down

```java
int N, v[MAXN], dp[MAXS];
int count(int S) {
    if (dp[S] != -1) return dp[S];
    int ans = 0;
    for (int i = 0; i < N; i++) {
        if (S >= v[i]) ans += count(S - v[i]);
    }
    return dp[S] = ans;
}
```

• Bottom-up

```java
int N, v[MAXN], dp[MAXS];
void count() {
    dp[0] = 1;
    for (int S = 1; S < MAXS; S++) {
        for (int i = 0; i < N; i++) {
            if (S >= v[i]) dp[S] += dp[S - v[i]];
        }
    }
}
```

Not much difference 😊.
Two topo-sort algorithms

* Assuming the graph is DAG

• **Queue (Kahn’s)**
 - Add nodes with in-degree = 0 to the queue
 - Pop nodes out of the queue, decrement their neighbors’ in-degrees. Add those new nodes with in-degree = 0 to the queue.

• **DFS**
 - The current node that completes its DFS has no more outgoing edges and therefore comes first in topo order.
 - Do DP computation in post-order traversal.
Topo-sort and DP

- Use Kahn’s algorithm for topo-order: bottom-up DP

- Use DFS for topo-order: top-down DP

```
int N, v[MAXN], dp[MAXS];
void count() {
    dp[0] = 1;
    for (int S = 1; S < MAXS; S++) {
        for (int i = 0; i < N; i++) {
            if (S >= v[i]) dp[S] += dp[S - v[i]];
        }
    }
}
```

```
int N, v[MAXN], dp[MAXS];
int count(int S) {
    if (dp[S] != -1) return dp[S];
    int ans = 0;
    for (int i = 0; i < N; i++) {
        if (S >= v[i]) ans += count(S - v[i]);
    }
    return dp[S] = ans;
}
```
Which one is better?

• It depends:
 – If the problem has a clear implicit topo-order (e.g. the Fibonacci Sequence, the counting problem), then bottom-up could be simpler to implement.
 – If the problem has a clear sub-dividing strategy, then top-down could be more intuitive.
• Given a stick of integer length L, cut it into multiple segments of integer lengths.

• You are given a list of (length, value) pairs. For every possible length there is an associated value.

• Your task is to maximize your total value after cutting.

• Example:

<table>
<thead>
<tr>
<th>Length</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Answer with $L = 4$ is 9.
Cut into 2 segments with lengths 1 and 3.
• **State**
 - Cut(L): maximum total value we can get for a stick of length L

• **Transition**
 - \(\text{cut}(L) = \max_{i} \{ \text{value}(i) + \text{cut}(L - i) \} \)

• **Order**
 - Larger L depends on smaller L’s
Cutting Sticks – DAG (top)

* Note that values are **NOT** states
Cutting Sticks – DAG (top)

* Note that values are **NOT** states
Cutting sticks – top-down implementation

- Because of the action of cutting, it seems that using top-down is more intuitive.

```c
int value[MAXN], dp[MAXN];
int cut(int L) {
    if (dp[L] != -1) return dp[L];
    if (L == 0) return dp[L] = 0;
    int ans = 0;
    for (int i = 1; i <= L; i++) {
        ans = max(ans, value[i] + cut(L - i));
    }
    return dp[L] = ans;
}
```
• Actually the DAG is a complete DAG.
• So it could be intuitive too to compute bottom up 😊

```java
int value[MAXN], dp[MAXN];
void cut() {
    dp[0] = 0;
    for (int l = 1; l < MAXL; l++) {
        for (int i = 1; i <= l; i++) {
            dp[l] = max(dp[l], value[i] + dp[l - i]);
        }
    }
}
```
Why DAG is important

- It helps you *perceive* the problem better.
- It helps you find the simplest way to *implement* the same DP algorithm.
- It helps you *determine* if a problem can be solved by DP.
Grid Walking

• Given a grid map with blocks, determine the number of different ways to walk from (top, left) to (bottom, right) if you can only walk east or south.
Perceive – Grid Walking
Perceive - Grid Walking (cont’d)

State
- ways(i, j): number of ways to reach cell(i, j) from the starting cell

Transition
- ways(i, j) = ways(i - 1, j) + ways(i, j - 1)
- ways(i, j) = 0 if (i, j) is a blocked cell

Order
- Right depends on left
- Bottom depends on top
Implement – Grid Walking

• The grid map has implicit topology that allows us to get a topo-order simply by iterating i and j.

```c
bool block[MAXN][MAXN];
int N, dp[MAXN][MAXN] = {};  

int walk() {
    dp[1][1] = 1;
    for (int i = 1; i <= N; i++) {
        for (int j = 1; j <= N; j++) {
            if (block[i][j]) continue;
            dp[i][j] += dp[i - 1][j];
            dp[i][j] += dp[i][j - 1];
        }
    }
    return dp[N][N];
}
```
Implement – Grid Walking (cont’d)

• Won’t be much work to do top-down either? 😊

```cpp
bool block[MAXN][MAXN];
int N, dp[MAXN][MAXN];
bool out(int i, int j) {
    return i < 1 || j < 1 || i > N || j > N;
}
int walk(int i, int j) {
    if (dp[i][j] != -1) return dp[i][j];
    if (i == 1 && j == 1) return dp[i][j] == 1;
    if (block[i][j] || out(i, j)) return dp[i][j] = 0;
    return dp[i][j] = walk(i - 1, j) + walk(i + 1, j);
}
```
Determine – Grid Walking

• The previous Grid Walking problem clearly has a DAG.

• What if we change the possible walking directions to all four? (up, down, left, right)

• Of course we would have infinite number of ways to reach the goal. Therefore we restrict our walk to take exactly K steps.
 – Count how many ways to reach cell (i, j) from $(1, 1)$ with exactly K moves
Unfortunately this is no longer a DAG and there is NO way to do DP on this.
What should we do if it is not a DAG

• Try to make a DAG if you are not given a DAG directly.

• How?
 – Observe where we cannot go back to previous states
 – In other words, observe the monotonicity based on which we can create a DAG
Grid Walking 2 – DAG creation

• Where we cannot go back
 – After taking K steps, we can never go back to the states where we have taken $k < K$ steps.
 – In other words, K is monotonically increasing.

• Idea: Build a DAG with states $\text{ways}(i, j, k)$: the number of ways we can reach cell (i, j) using exactly k steps.
Grid Walking 2 - DAG

Increasing K
How to implement

• Typically, one more dimension in your DP state corresponds to:
 – Top-down: a new argument of your recursive function
 – Bottom-up: a new dimension of your multi-dimensional array
Grid Walking 2 – Top-down

```c
31 bool block[MAXN][MAXN];
32 int N, dp[MAXN][MAXN][MAXK];
33 bool out(int i, int j) {
34     return i < 1 || j < 1 || i > N || j > N;
35 }
36 int walk(int i, int j, int k) {
37     if (dp[i][j][k] != -1) return dp[i][j][k];
38     if (k == 0) return i == 1 && j == 1;
39     if (block[i][j] || out(i, j)) return dp[i][j][k] = 0;
40     return dp[i][j][k] =
41         walk(i + 1, j, k - 1) +
42         walk(i - 1, j, k - 1) +
43         walk(i, j + 1, k - 1) +
44         walk(i, j - 1, k - 1);
45 ```
void walk() {
    dp[1][1][0] = 1;
    for (int k = 1; k < MAXK; k++) {
        for (int i = 1; i <= N; i++) {
            if (block[i][j]) continue;
            dp[i][j][k] += dp[i + 1][j][k - 1];
            dp[i][j][k] += dp[i - 1][j][k - 1];
            dp[i][j][k] += dp[i][j + 1][k - 1];
            dp[i][j][k] += dp[i][j - 1][k - 1];
        }
    }
Which one is better? 😊

```c
bool block[MAXN][MAXN];
int N, dp[MAXN][MAXN][MAXK];

bool out(int i, int j) {
 return i < 1 || j < 1 || i > N || j > N;
}

int walk(int i, int j, int k) {
 if (dp[i][j][k] != -1) return dp[i][j][k];
 if (k == 0) return i == 1 && j == 1;
 if (block[i][j] || out(i, j)) return dp[i][j][k] = 0;
 return dp[i][j][k] =
 walk(i + 1, j, k - 1) +
 walk(i - 1, j, k - 1) +
 walk(i, j + 1, k - 1) +
 walk(i, j - 1, k - 1);
}
```

```c
void walk() {
 dp[1][1][0] = 1;
 for (int k = 1; k < MAXK; k++) {
 for (int i = 1; i <= N; i++) {
 if (block[i][j]) continue;
 dp[i][j][k] += dp[i + 1][j][k - 1];
 dp[i][j][k] += dp[i - 1][j][k - 1];
 dp[i][j][k] += dp[i][j + 1][k - 1];
 dp[i][j][k] += dp[i][j - 1][k - 1];
 }
 }
}
```
Subtle differences between bottom-up and top-down

• Top-down requires significant stack space while bottom-up uses little.

• Top-down doesn’t support the memory saving trick.

• It is observed that when a problem has implicit simple DAG, it is faster and neater to code bottom-up.

• Bottom-up may not neatly compute only the necessary states. Sometimes redundant states are involved, resulting in additional computation time.

• Anyway, most of the time it is your call.
How to get a DP procedure

• Formulate its DAG (either explicitly or implicitly)
  – Determine the states (DAG nodes)
  – Determine the transitions (DAG edges)
  – Determine the order (implicit or explicit DAG topo-sort)

• Think about the computation costs
  – Affordable Memory
  – Affordable Time
Affordable Memory

• The maximum number of states during computation must fit in the memory limit
  – DP space most commonly is the number of total states. DAG size must not be too large.
  – Memory saving trick: reduce the memory requirement by one more dimension.

• Fibonacci Sequence:
  – We can only work up to Fib(N) where $O(N)$ fits in the memory

• Grid Walking 2:
  – $O(NMK)$ space, as there are $N \times M \times K$ nodes in the DAG
  – or $O(NM)$ if you use the memory saving trick
Memory saving trick

• Simply put: forget about the states if they will no longer be depended on.
  – In other words, let those states be gone forever after they are processed in the topo order.
Memory saving trick – Grid Walking 2

this layer will never be used again,

once we reach this layer
Implementation – memory saving trick

```c
bool block[MAXN][MAXN];
int N, dp[2][MAXN][MAXN];

void walk()
{
 int now = 0, pre;
 dp[now][1][1] = 1;

 for (int k = 1; k <= MAXK; k++) {
 pre = now; now ^= 1;
 memset(dp[now], 0, sizeof(dp[now]));

 for (int i = 1; i <= N; i++) {
 for (int j = 1; j <= N; j++) {
 if (block[i][j]) continue;
 dp[now][i][j] += dp[pre][i - 1][j];
 dp[now][i][j] += dp[pre][i + 1][j];
 dp[now][i][j] += dp[pre][i][j + 1];
 dp[now][i][j] += dp[pre][i][j - 1];
 }
 }
 }
}
```
• The total computation cost must fit in the Time Limit.

• If the total number of states is $C$, then the time complexity would be $\Omega(C)$, as every state shall be computed.

• However, it could be more than that, depending on how much time is needed for each state.
Recall the Cutting Sticks problem.

- We have a complete DAG where each state $Cut(i)$ depends on every $Cut(j)$, $j < i$.

In order to compute $Cut(i)$, we need to traverse $i - 1$ states. Therefore we need on average linear time to compute each state. The total time complexity is thus $O(L^2)$. 

Time needed to compute each state
## Online judge scenarios

<table>
<thead>
<tr>
<th>Problem</th>
<th>Time</th>
<th>Space</th>
<th>Small</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibonacci Sequence</td>
<td>$O(N)$</td>
<td>$O(N)$</td>
<td>$N \leq 100$</td>
<td>$N \leq 10^7$</td>
</tr>
<tr>
<td>Counting Problem</td>
<td>$O(NS)$</td>
<td>$O(S)$</td>
<td>$N \leq 20$</td>
<td>$N \leq 100$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$S \leq 1000$</td>
<td>$S \leq 10^6$</td>
</tr>
<tr>
<td>Cutting Sticks</td>
<td>$O(L^2)$</td>
<td>$O(L)$</td>
<td>$L \leq 100$</td>
<td>$L \leq 5000$</td>
</tr>
<tr>
<td>Grid Walking</td>
<td>$O(NM)$</td>
<td>$O(NM)$</td>
<td>$N,M \leq 100$</td>
<td>$N,M \leq 5000$</td>
</tr>
<tr>
<td>Grid Walking 2</td>
<td>$O(NMK)$</td>
<td>$O(NM)$</td>
<td>$N,M,K \leq 100$</td>
<td>$N,M,K \leq 500$</td>
</tr>
</tbody>
</table>

*Memory saving trick required*
Finding DP states

• A DP problem typically contains important variables that can be used as a dimension of the DP state.
  – Counting Problem: sum $S$ given
  – Cutting Sticks: stick length $L$ given
  – Grid Walking 2: number of steps $K$ given

• More challenging DP questions demand more insights into the computation process, where we may have DP states corresponding not to the problem variables, but to our computation.
Minimum Balance

• Given N positive integers \(a_1, a_2 \ldots a_N\), as a multiset (allowing duplicates), split them into two multisets so that the two multisets have the smallest possible absolute difference.

• Example:
  - \(\{1,2,3,4\}\)  \hspace{1cm} Answer: \(\text{minDiff} = 0\), e.g. \(\{1,4\}, \{2,3\}\)
  - \(\{2,4,5,6\}\)  \hspace{1cm} Answer: \(\text{minDiff} = 1\), e.g. \(\{2,6\}, \{4,5\}\)
  - \(\{1,1,10\}\)  \hspace{1cm} Answer: \(\text{minDiff} = 8\), e.g. \(\{1,1\}, \{10\}\)
• **State:** possible($i$, $S$), whether we can find a multiset of integers with sum $S$, among the first $i$ integers.

• Note that $S$ is not directly given in the problem. But it is closely related to the balance that is asked for.
  
  – If we know possible($N$, $S$) is true, then we can split the integers into two multisets with $S$ and $S_{total} - S$, and their difference is $|S - (S_{total} - S)|$.
  
  – The problem is equivalent to finding the value $S$ closest to $S_{total}/2$ so that possible($N$, $S$) is true.
Minimum Balance - DAG

\[ a_1 = 3 \]

\[ a_2 = 3 \]
Minimum Balance - DAG

(0, 0) \rightarrow (0, S_{total})
Minimum Balance - Implementation

```c
// Code snippet
```
Lucky Strings

• A string $X$ is lucky if it contains a lucky character $t$.

• Given the lucky character $t$, count how many lucky strings $X$ of length $N$ exist ($|X| = N$).

• Strings contain lowercase English letters. For simplicity, we only use the first 3 letters: ‘a’, ‘b’, ‘c’.
Lucky Strings – DP Formulation

- **State**: count($i, \text{exist}$)
  - $i$: We have written $i$ letters ($1 \leq i \leq N$)
  - \text{exist}: we have already written at least once the lucky character $c$

- Note that \text{exist} is not directly retrieved from the variables defined by the problem. We come up with it for our computation.
Lucky character \( t = 'b' \)

- **i = 0**
  - "", false
  - "b", true
  - "c", false

- **i = 1**
  - "a", false
  - "ab", true
  - "ac", false

- **i = 2**
  - "ba", true
  - "bb", true
  - "bc", true

...
Lucky String - Turn it to code

```c
int N, dp[MAXN][2];
int count() {
 dp[0][0] = 1;
 for (int i = 1; i <= N; i++) {
 for (int exist = 0; exist < 2; exist++) {
 dp[i][1] += dp[i - 1][exist]; // write 'b'
 dp[i][exist] += 2 * dp[i - 1][exist]; // write 'a' or 'c'
 }
 }
 return dp[N][1];
}
```
• A string X is lucky if it contains a lucky substring Y.

• Given the lucky substring Y, count how many lucky strings X of length N exist (|X| = N). |Y| <= N.

• All letters in Y are distinct.
Lucky Strings 2 – DP Formulation

- **State: count**\((i, m)\)
  - \(i\): We have written \(i\) letters \((1 \leq i \leq N)\)
  - \(m\): the last \(m\) letters we wrote match the first \(m\) letters of \(Y\).
    - If \(m = |Y|\), then it means we have at least written \(Y\) once previously.

- Note that \(m\) is not directly retrieved from the variables defined by the problem either. We come up with it to track the substring matching process.
Lucky substring $Y = \text{"ab"}$

- $i = 0$
  - \text{"}, 0
  - \text{"a"}, 1
  - \text{"b"}, 0
  - \text{"c"}, 0

- $i = 1$
  - \text{"a"}, 1
  - \text{"b"}, 0
  - \text{"c"}, 0

- $i = 2$
  - \text{"aa"}, 1
  - \text{"ab"}, 2
  - \text{"ac"}, 0

- $i = 3$
  - \text{"aaa"}, 1
  - \text{"aab"}, 2
  - \text{"aac"}, 0
  - \text{"aba"}, 2
  - \text{"abb"}, 2
  - \text{"abc"}, 2

Lucky Strings 2 - DAG
Lucky String 2 - Turn it to code

```c
int N, dp[MAXN][MAXN];
char Y[MAXN];
int count() {
 int M = strlen(Y);
 for (int i = 1; i <= N; i++) {
 for (int m = 0; m < M; m++) {
 // write Y[m]
 dp[i][m + 1] = dp[i - 1][m];
 // write anything other than Y[0] and Y[m], since we only
 // have 'a', 'b', 'c', and Y[m] != Y[0], there leaves
 // one choice left
 dp[i][0] += dp[i - 1][m];
 // write Y[0]
 dp[i][1] += dp[i - 1][m];
 }
 dp[i][M] += dp[i - 1][M] * 3; // anything works
 }
 return dp[N][M];
}
```
• **Y has to contain distinct letters.** Otherwise our DP has to be changed.

• Consider $Y = “abac”$. When $i = 4$ and $m = 3$, if we write ‘b’, it would be a mismatch. But the new $m$ would be 2, instead of 0.

This is because the $m$ letters we’ve just written could match some prefix of $Y$ even when the next letter we are writing doesn’t match $Y[m]$.
Counting in DP – modulo arithmetic

• Answer could grow exponentially.

• $(a + b) \ % \ M = ((a \ % \ M) + (b \ % \ M)) \ % \ M$
  – Ensure that $\sim 2M$ fits in an 32-bit integer.
  – Typically when $M \sim= 10^9$, the above is satisfied.

• $a \times b \ % \ M = ((a \ % \ M) \times (b \ % \ M)) \ % \ M$
  – Ensure $M^2$ fits in an integer
  – Typically when $M \sim= 10^9$, we must use 64-bit integer for the multiplication: $((\text{long long})a \times b) \ % \ M$
Summary

• Thinking about the DAG behind DP helps you
  – **Perceive** the problem more clearly
  – See how to **implement** the DP procedure neatly
  – **Determine** if a problem is solvable by DP, or how to solve it by DP.

• Formulate your DP
  – **Think about the DAG:** find states from problem variables, derived dimensions; get transitions
  – **Affordable memory:** check number of states, memory saving trick
  – **Affordable time:** check number of states, computation cost for each state
Exercises

• Cutting Sticks
  – Compute the maximum sum of values after cutting the original sticks into exactly \( K \) segments.
  – Suppose the stick values are in dollars. Each cut costs you \( D \) dollars. Find the maximum dollars you can achieve after cutting.

• Minimum Balance
  – Suppose \( N \) is even. Find a split into two multisets so that not only the difference between two sums are minimum, but also the two multisets have the same number of integers.

• Lucky String
  – Analyze the complexity requirement for Lucky String and Lucky String 2.
  – Note that the time complexity for Lucky String 2 may additionally include the alphabet size, why?
Challenges

• Lucky String 2:
  – Remove the constraint of Y’s letters being distinct.
  – Naive implementation of $matchHead(m, c)$ could work but would give larger time complexity. Use an efficient algorithm that performs $matchHead(m,c)$ in $O(1)$ time.
  – Hint: string matching algorithm

• Grid Walking 2: What if $N, M <= 10, K <= 10^9$?
  – We cannot afford any solution that needs $O(10^9)$ time OR space.
  – Still solvable, as an advanced exercise 😊
  – Hint: why should $N, M$ become smaller, i.e. $<= 10$?