CSCI-UA.0480-003 Parallel Computing
Spring 2016

Pre-requisite: Computer System Organization (CSCI-UA.0201)
Meeting time and place: Mondays/Wednesdays 2:00-3:15pm KMEC 804
Instructor: Mohamed Zahrani (mzahrani@cs.nyu.edu)
Web page: http://cs.nyu.edu/courses/spring16/CSCI-UA.0480-003/
Office hours: Tuesdays 2-4pm (WWH 320)

Check the web page for updated information about the course, announcements, as well as
the lecture notes. Each lecture note will be posted before the actual lecture day.

Description:

Most of us have learned to program a single microprocessor using a high-level
programming language like C/C++, Java, ... This is called sequential programming. We
feel very comfortable with this because we think in a sequential way and give the
machine statements to be executed in sequence. However, this has to change. A single
microprocessor (or single core) no longer exists in almost all computers we are using
today (including your tablets and smart phones). Most of our devices are now multicore
processors. A multicore processor contains several cores (called CPUs or cores) on-chip.
To make the best use of these multicore chips we need to program them in-parallel.
Sequential programming, for all platforms from smartphones to supercomputers, is
falling out of fashion and taking back-seat to parallel programming.
How to think in parallel? How to write code in parallel to make the best use of the
underlying hardware? How is that new hardware different from the traditional one? What
will the future be for the software and hardware? This is the topic of this course.

Text:

We will use the following book:

Author: Gerassimos Barlas
Title: Multicore and GPU Programming: An Integrated Approach
Publisher: Morgan Kaufmann
Year: 2015
ISBN 978-0-12-417137-4

The following one is not required but is easy to follow for multicore programming (does
not have GPU programming though).

Author: Peter S. Pacheco
Title: An Introduction to Parallel Programming
Publisher: Morgan Kaufmann
Year: 2011
ISBN 978-0-12-374260-5
Main Topics

- What is parallel computing? And why do we need it?
- Basics of parallel hardware
- Challenges in parallel programming
- How to think in parallel?
- OpenMP for shared memory
- MPI for distributed
- Performance analysis of parallel programs
- Pitfalls in parallel programming
- GPUs and CUDA
- Supercomputers and how to program them.

Grading

- Homework assignments 20%
- Labs 20%
- Midterm 20%
- Final exam 40%

If you have a documented disability and wish to discuss academic accommodations with me, please contact me as soon as possible.

Feedback: I would like as much feedback/criticisms as possible from you, as early as possible, so that I can try to improve the way the course is taught. Please feel free to give me any suggestions (anonymously if you wish) that you think could improve the way the course is handled. Keep in mind that you are not alone. If you have a question, undoubtedly others do too; and we will all benefit from your input. Do not be shy to ask about anything you do not understand in the course.

Good Luck and Have fun!