Lecture 17: GPUs - Intro

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com
Two Main Goals for Current Architectures

• Maintain execution speed of old sequential programs

• Increase throughput of parallel programs
Two Main Goals for Current Architectures

• Maintain execution speed of old sequential programs
 - CPU

• Increase throughput of parallel programs
 - GPU
Figure 1.1. Enlarging Performance Gap between GPUs and CPUs.

Courtesy: John Owens
CPU is optimized for sequential code performance
Almost 10x the bandwidth of multicore (relaxed memory model)
How to Choose A Processor for Your Application?

• Performance
• Very large installation base
• Practical form-factor and easy accessibility
• Support for IEEE floating point standard
Regularity + Massive Parallelism
A Quick Glimpse on: Flynn Classification

- A taxonomy of computer architecture
- Proposed by Micheal Flynn in 1966
- It is based two things:
 - Instructions
 - Data

<table>
<thead>
<tr>
<th></th>
<th>Single instruction</th>
<th>Multiple instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single data</td>
<td>SISD</td>
<td>MISD</td>
</tr>
<tr>
<td>Multiple data</td>
<td>SIMD</td>
<td>MIMD</td>
</tr>
</tbody>
</table>
PU = Processing Unit
Problems Faced by GPUs

- Need enough parallelism
- Under-utilization
- Bandwidth to CPU
Let’s Take A Closer Look: The Hardware
• PCIe 3.0 speeds = 8 GB-transfers per second per lane
• widest supported links = 16 lanes
• In the near future: NVLINK
Modern GPU Hardware

• GPUs have many parallel execution units and higher transistor counts, while CPUs have few execution units and higher clock speeds
• GPUs have much deeper pipelines (several thousand stages vs 10-20 for CPUs)
• GPUs have significantly faster and more advanced memory interfaces as they need to shift around a lot more data than CPUs
Single-Chip GPU vs Supercomputers

(Next range is exaops)
A Glimpse at At A GPGPU: GeForce 8800 (2007)

16 highly threaded SM's, >128 FPU's, 367 GFLOPS, 768 MB DRAM, 86.4 GB/S Mem BW, 4GB/S BW to CPU
A Glimpse at A Modern GPU

Streaming Multiprocessor (SM)
A Glimpse at A Modern GPU

SPs within SM share control logic and instruction cache
Scalar vs Threaded

Scalar program

```c
float A[4][8];

for(int i=0;i<4;i++){
    for(int j=0;j<8;j++){
        A[i][j]++;
    }
}
```
Multithreaded: (4x1)blocks – (8x1) threads

Grid

kernelF contains 4 x 1 thread blocks

block 0,0 block 0,1 block 0,2 block 0,3

Thread Block

Each thread block contains 8 x 1 threads
Multithreaded: (2x2)blocks – (4x2) threads

Grid contains 2 x 2 thread blocks:
- block 0,0
- block 0,1
- block 1,0
- block 1,1

Thread Block contains 4 x 2 threads:
- thread 0,0
- thread 0,1
- thread 0,2
- thread 0,3
- thread 1,0
- thread 1,1
- thread 1,2
- thread 1,3

Each thread block contains 4 x 2 threads.
Scheduling Thread Blocks on SM

Example:
Scheduling 4 thread blocks on 3 SMs.

Grid
- kernelF contains 2 x 2 thread blocks
- block 0,0, block 0,1, block 1,0, block 1,1

Thread Block
- Each thread block contains 4 x 2 threads
- thread 0,0, thread 0,1, thread 0,2, thread 0,3
- thread 1,0, thread 1,1, thread 1,2, thread 1,3

Thread
Another NVIDIA GPU: FERMI

32 cores/SM

~3B Transistors
Another NVIDIA GPU: Kepler

~7.1B transistors
192 cores per SMX
Nvidia Chip GK110 Based on Kepler Architecture

- 7.1 billion transistors
- More then 1 TFlop of double precision throughput
 - 3x performance per watt of Fermi
- New capabilities:
 - Dynamic parallelism
 - Hyper-Q (several cores using the same GPU)
 - Nvidia GPUDirect
Another NVIDIA GPU: Maxwell

~8B transistors
128 cores per SMM
(Nvidia claims a 128 CUDA core SMM has 90% of the performance of a 192 CUDA core SMX.)
Main Goals of Newer GPUs

• Increasing floating-point throughput
• Allowing software developers to focus on algorithm design rather than the details of how to map the algorithm to the hardware
• Power efficiency
Quick Glimpse At Programming Models

Application → Kernels → Threads → Blocks

Thread Block → Grid

Thread
Quick Glimpse At Programming Models

- **Application** can include multiple kernels
- **Threads** of the same **block** run on the same **SM**
 - So threads in SM can operate and share memory
 - Block in an SM is divided into **warps** of 32 threads each
 - A warp is the fundamental unit of dispatch in an SM
- **Blocks** in a **grid** can coordinate using global shared memory
- **Each grid** executes a kernel
Scheduling In NVIDIA GPUs

• At any point of time the entire device is dedicated to a single application
 – Switch from an application to another takes ~25 microseconds

• Modern GPUs can simultaneously execute multiple kernels of the same application

• Two warps from different blocks (or even different kernels) can be issued and executed simultaneously
Scheduling In NVIDIA GPUs

• Two-level, distributed thread scheduler
 – At the chip level: a global work distribution engine schedules thread blocks to various SMs
 – At the SM level, each warp scheduler distributes warps of 32 threads to its execution units.
An SM in Fermi

- 32 cores
- SFU = Special Function Unit
- 64KB of SRAM split between cache and local mem

Each core can perform one single-precision fused multiply-add (FMA) operation in each clock period and one double-precision FMA in two clock periods.
The Memory Hierarchy

• All addresses in the GPU are allocated from a continuous 40-bit (one terabyte) address space.

• **Global, shared, and local** addresses are defined as ranges within this address space and can be accessed by common load/store instructions.

• The load/store instructions support 64-bit addresses to allow for future growth.
The Memory Hierarchy

• Local memory in each SM
• The ability to use some of this local memory as a first-level (L1) cache for global memory references.
• The local memory is 64K in size, and can be split 16K/48K or 48K/16K between L1 cache and shared memory.
• Because the access latency to this memory is also completely predictable, algorithms can be written to interleave loads, calculations, and stores with maximum efficiency.
Modern GPUs are also equipped with an L2 cache.
The L2 cache subsystem also implements a set of memory read-modify-write operations that are atomic.
GPUs Today

• Are more and more general purpose and not only for graphics
• Discrete
 – separate chip on-board like all Nvidia GPUs and AMD GPUs
• Integrated
 – With the CPU on the same chip like the GPU in Intel Sandy Bridge and Ivy Bridge
Memory Bus

- **Memory bus**
 - Path between GPU itself and the video card memory
 - **Bus width and speed of memory → bandwidth (GB/s) → more is better**
 - Example:
 - GTX 680: 6GHz memory and 256-bit interface → 192.2 GB/s
 - GTX Titan: 6GHz memory and 384-bit interface → 288.4 GB/s
 - Since most modern GPUs use 6GHz memory, the bus width is the one that makes the difference.
Conclusions

• The main keywords:
 – data parallelism
 – kernel, grid, block, and thread
 – warp

• Some applications are better run on CPU while others on GPU

• Main limitations
 – The parallelizable portion of the code
 – The communication overhead between CPU and GPU
 – Memory bandwidth saturation