Selection
General problem: Given a list L of n items, and $k \in \{1, \ldots, n\}$, find kth smallest element in L

Special case: $k = \lfloor n/2 \rfloor$... the median

One solution: sort the items into increasing order, return kth entry in the sorted list

This takes time $O(n \log n)$

We can do better: linear time!

- a randomized algorithm with expected running time $O(n)$
- a deterministic algorithm with running time $O(n)$
Quick Select: a randomized selection algorithm

QSelect(L, k):

choose *p* from *L* at random
partition *L* into 3 sublists: *L*<sub>*p*, *L*<sub>=*p*, *L*<sub>*p*

if *k* ≤ |*L*<sub>*p*| then
 return **QSelect**(L<sub>*p*, *k*)

else if *k* ≤ |*L*<sub>*p*| + |*L*<sub>=*p*| then
 return *p*

else // *k* > |*L*<sub>*p*| + |*L*<sub>=*p*|
 return **QSelect**(L<sub>*p*, *k* − |*L*<sub>*p*| − |*L*<sub>=*p*|)
Intuition:

we split the problem into two problems of “roughly equal” size (in linear time) and then solve one of them

reminds us of the recurrence $T(n) \leq T(n/2) + O(n)$

Master Theorem says: $T(n) = O(n)$

BUT . . . this is not rigorous: the splitting step is probabilistic, and we may get some “bad” splits
Let $W :=$ number of comparisons

Theorem. $E[W] = O(n)$

For $j = 0, 1, 2, \ldots$ let $N_j :=$ size of the subproblem at level j (or zero if none)

Claim. $E[N_j] \leq (3/4)^j n$ and for each $j = 0, 1, 2, \ldots$

Using the claim:

\[
W \leq N_0 + N_1 + \cdots
\]

\[
E[W] \leq E[N_0] + E[N_1] + \cdots
\]

\[
\leq n \sum_{j \geq 0} (3/4)^j
\]

\[
= (1/(1 - 3/4))n = 4n
\]
Proof of Claim.

$N_0 = n$

Let’s first prove that $E[N_1] \leq (3/4)n$

Imagine the items in L are sorted

Let R the index of the pivot p in the sorted list

R is uniformly distributed over $\{1, \ldots, n\}$

$|L_{<p}| \leq R - 1$ and $|L_{>p}| \leq n - R$

∴ $N_1 \leq \max\{R - 1, n - R\}$
A calculation . . .

Assume R uniform over $\{1, \ldots, n\}$

Want to show: $E[\max\{R - 1, n - R\}] \leq (3/4)n$

NOTE: $E[\max\{X, Y\}] \not\leq \max\{E[X], E[Y]\}$

Proof by picture ($n = 8$):

```
0 1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8
```

expectation $\leq 1/n$ times shaded area
To recap: we have proved \(E[N_1] \leq (3/4)n \)

What about \(N_2 \)? \textbf{Use conditional expectation:}

\[
E[N_2] = \sum_m E[N_2 \mid N_1 = m] \Pr[N_1 = m]
\]

\[
\leq \sum_m \left((3/4)m \right) \Pr[N_1 = m]
\]

\[
= (3/4) E[N_1] \leq (3/4)^2 n
\]

By induction: \(E[N_j] \leq (3/4)^j \) for \(j = 0, 1, 2, \ldots \)
Analysis of recursion depth

Let $D :=$ the depth of the recursion tree

Theorem. $E[D] = O(\log n)$

Tail sum formula: $E[D] = \sum_{j \geq 1} \text{Pr}[D \geq j]$

Observe: $D \geq j \iff N_j \geq 1$

Markov says: $\text{Pr}[N_j \geq 1] \leq E[N_j] \leq (3/4)^j n$

$$E[D] = \sum_{j \geq 1} \text{Pr}[D \geq j]$$

$$= \sum_{(3/4)^j n > 1} \text{Pr}[D \geq j] + \sum_{(3/4)^j n \leq 1} \text{Pr}[D \geq j]$$
Set \(j_0 := \lceil \log_{4/3} n \rceil \)

We have:

\[
E[D] = \sum_{j \geq 1} \Pr[D \geq j]
\]

\[
= \sum_{(3/4)^j n > 1} \Pr[D \geq j] + \sum_{(3/4)^j n \leq 1} \Pr[D \geq j]
\]

\[
\leq \sum_{j=1}^{j_0-1} 1 + \sum_{j=j_0}^{\infty} (3/4)^j n
\]

\[
\leq j_0 - 1 + \sum_{j=0}^{\infty} (3/4)^j \leq \log_{4/3} n + 4
\]
Practical aspects: a fast, in-place partitioning algorithm

An idea from Bentley & McIlroy (1993)

Two inner loops:

- moving b: scan over $<$, swap $=$, halt on $>$
- moving c: scan over $>$, swap $=$, halt on $<$

Swap elements b and c, $b++$, $c--$

Repeat until b crosses c

When finished, the $=$’s are swapped to the middle
Deterministic linear-time selection

Idea:

- divide \(L \) into \(\approx n/5 \) blocks of size 5
- sort each block, and compute median of each block
- let \(M := \) the list of medians (so \(|M| \approx n/5 \))
- recursively find the median \(p \) of \(M \)
- use \(p \) as the pivot, and proceed as in Quick Select
Consider a single recursive invocation

Local cost is $O(n)$

Both $|L_{<p}|$ and $|L_{>p}|$ are $\leq (7/10)n + O(1)$

Two recursive calls:

- one of size at most $n/5 + O(1)$
- one of size at most $(7/10)n + O(1)$
Sum of subproblem sizes is \(\leq 0.9n + c \), for some constant \(c \)

Choose \(n_0 \) such that \(0.9n + c \leq 0.91n \) for all \(n \geq n_0 \)

Implementation: halt recursion when \(n < n_0 \)

Let \(s_j := \) sum of problem sizes at level \(j \), for \(j = 0, 1, 2, \ldots \)

We have \(s_j \leq (0.91)^j n \) for \(j = 0, 1, 2, \ldots \)

Total cost is \(O(w) \), where

\[
w := \sum_{j \geq 0} s_j \leq \sum_{j \geq 0} (0.91)^j n \leq \frac{100}{9} n
\]