1. **Rates of growth.** Sort the following functions in order of their rate of growth. That is, sort them into a list f_1, f_2, \ldots, f_n, so that for $i = 1, \ldots, n - 1$, we have $f_i = O(f_{i+1})$. Also, for each adjacent pair of functions f_i, f_{i+1} in your sorted list, indicate whether or not $f_i = o(f_{i+1})$.

- n^2, n^n, $\ln(n)$, $n \ln(n)$, $n \ln(\ln(n))$, $20n^2 + 117n - 6$,
- $n^2 \ln(n)$, $\log_2 n$, $(\log_2(n))^{100}$, $\log_2(n^{100})$, n, 2^n, $n(\ln(n) + (\ln(\ln(n)))^2)$.

2. **Estimating sums by integrals.** Using the method of estimating a sum by an integral, show that

(a) $\sum_{i=1}^n 1/i = \ln(n) + O(1)$
(b) $\sum_{i=1}^n \ln(i) = n \ln(n) + O(n)$
(c) $\sum_{i=1}^n i \ln(i) = \frac{1}{2} n^2 \ln(n) + O(n^2)$

Recall that this method applies when f is continuous and monotone on an interval $[a, b]$, where a and b are integers, and says that

$$\min(f(a), f(b)) \leq \sum_{i=a}^b f(i) - \int_a^b f(x) \, dx \leq \max(f(a), f(b)).$$

Note: just use known facts about integrals, from a textbook or an online calculator. Also note: when we say $f = g + O(h)$, we mean that $|f - g| = O(h)$.

3. **Mystery algorithm.** Consider the following algorithm, which operates on an array $A[1 \ldots n]$ of integers.

for $i \leftarrow 1$ to n do
 $A[i] \leftarrow 0$
for $i \leftarrow 1$ to n do
 $j \leftarrow i$
 while $j \leq n$ do
 $A[j] \leftarrow A[j] + 1$
 $j \leftarrow j + i$

(a) Show that the running time of this algorithm is $O(n \log n)$.
(b) Describe in words the value of $A[i]$ at the end of execution.

4. **Sieve of Eratosthenes.** The Sieve of Eratosthenes is an algorithm that works on an array $A[2 \ldots n]$ of bits, as follows:

for $i \leftarrow 2$ to n do
 $A[i] \leftarrow 1$
for $i \leftarrow 2$ to $\lfloor \sqrt{n} \rfloor$ do
 if $A[i] = 1$ then
 $j \leftarrow 2i$
 while $j \leq n$ do
 $A[j] \leftarrow 0$
 $j \leftarrow j + i$

(a) Show that at the end of execution, for $i = 1, \ldots, n$, we have $A[i] = 1$ if and only if i is prime.
(b) It is a fact that

$$\sum_{p \leq n} \frac{1}{p} = \ln(\ln(n)) + O(1),$$

where the sum is over all primes p up to n. Use this fact to show that the running time of this algorithm is $O(n \log \log n)$.

1
5. **Weird recursion tree analysis.** Suppose we have an algorithm that on problems of size \(n \), recursively solves two problems of size \(n/2 \), with a “local running time” of \(O(f(n)) \) for some function \(f(n) \). That is, the algorithm’s total running time satisfies the recurrence \(T(n) \leq 2T(n/2) + O(f(n)) \). For simplicity, assume that \(n \) is a power of 2.

Prove the following using a recursion tree analysis:

(a) If \(f(n) = n \log n \), then \(T(n) = O(n(\log n)^2) \).
(b) If \(f(n) = n/\log n \), then \(T(n) = O(n \log \log n) \).
(c) If \(f(n) = n/(\log n)^2 \), then \(T(n) = O(n) \).

6. **Uneven divide and conquer.** Suppose we have an algorithm that on problems of size \(n \), recursively solves \(k \) subproblems of unequal size: for \(i = 1, \ldots, k \), the \(i \)th subproblem is of size \(\lfloor n/b_i \rfloor \). Here, each \(b_i \) is a constant greater than 1, and \(k \) is also a constant. Furthermore, the “local running time” is \(O(n) \). That is, the algorithm’s total running time satisfies the recurrence

\[
T(n) \leq \sum_{i=1}^{k} T(\lfloor n/b_i \rfloor) + cn
\]

for some constant \(c \). You may assume the above inequality holds for all \(n \geq 1 \), and that \(T(0) = 0 \).

Let \(\delta := \sum_{i=1}^{k} 1/b_i \). Assuming that \(\delta < 1 \), use the method of recursion trees to prove that \(T(n) = O(n) \).

Hint: prove by induction on \(j \) the following: at each level \(j = 0, 1, 2, \ldots \) of the recursion tree, the sum of the subproblem sizes at level \(j \) is at most \(\delta^j n \).