Hashing (4)
Cuckoo Hashing
Cuckoo Hashing

A simple scheme for resolving collisions in a hash table
Guaranteed constant time lookup
Expected constant time insertion
Requires stronger assumption for hash functions
We will work with Uniform Hashing Assumption
We will present a simplified version of the scheme, and a simplified analysis
We have a table $T[0..m-1]$ of m slots

Each slot is either null or contains a single data item

Data items are hashed using two hash functions:
$h_1, h_2 : \mathcal{U} \rightarrow \{0,\ldots,m-1\}$

We model each hash function as a truly random function from \mathcal{U} to $\{0,\ldots,m-1\}$

Any data item $a \in \mathcal{U}$ resides in one of two slots: either $h_1(a)$ or $h_2(a)$

Lookup procedure:
- test if $T[h_1(a)] = a$ or $T[h_2(a)] = a$
- \implies guaranteed constant time lookup
Procedure to insert a new data item a

```plaintext
let $n =$ # items already in the table
if $T[h_1(a)] = a$ or $T[h_2(a)] = a$ then
   return success // already in table
pos ← $h_1(a)$
repeat $n$ times
   if $T[pos] = $ null then
      $T[pos] ← a$
      return success // found an empty slot
swap $a$ and $T[pos]$
pos ← $h_1(a) + h_2(a) − pos$
   // $a$’s alternate position
return failure // need to rehash
```
The *cuckoo graph*:

Each slot is a vertex

Each data item a adds a random edge $e = \{h_1(a), h_2(a)\}$ to the graph

- undirected graph
- possibly a *multi-graph* — repeated edges
Arrows show alternate position of each item

Insert Z at position 0: 0 \xrightarrow{A} 3 \xrightarrow{B} 8

No cycle \implies no problem!

Insert Z at \(h_1(Z) = 7 \) (\(h_2(Z) = 1 \)):
7 \xrightarrow{W} H \xrightarrow{Z} 1 \xrightarrow{C} 2

Insert Z at \(h_1(Z) = 7 \) (\(h_2(Z) = 4 \)):
7 \xrightarrow{W} H \xrightarrow{Z} W \xrightarrow{H} H \xrightarrow{W} H \xrightarrow{H} 4 \ldots
only two slots for three items \implies failure
Lessons learned:

• If a new item is inserted at slot s, and there is no cycle in the graph reachable from s, then insertion will succeed

• In particular: if there are no cycles, insertion will succeed

• Even if there are cycles, insertion may succeed:
 ◦ The exact characterization of failure is a bit more complicated
Analyzing the probability of insertion failure

We will show that if $\alpha := n/m$ (the “load factor”) is at most $1/4$, then the probability that inserting n items into a table with m slots ends in failure is at most $3/4$.

How? Compute bound on probability p of a cycle in a multi-graph with m vertices (slots) and n random edges (data items) e_1, \ldots, e_n.

Strategy: for each $k = 1, 2, 3, \ldots$, estimate probability p_k that graph contains a simple cycle of length k.

Union bound: $p \leq \sum_{k \geq 1} p_k$.

NOTE: a more careful analysis shows failure probability is much smaller: $O(1/m)$.
Typical case: $p_3 := \text{probability of a 3-cycle:}$

\[
\begin{array}{c}
\text{s}_1 \\
\ \ \ \ \ \ \ \ \ \ \ \ \\
\text{s}_0 \quad \rightarrow \quad \text{s}_2
\end{array}
\]

$\leq m^3$ ways to pick s_0, s_1, s_2, but we count the same cycle 3 times

∴ # of 3-cycles: $\leq m^3/3$

Probability that
\[
(e_{i_1}, e_{i_2}, e_{i_3}) = (\{s_0, s_1\}, \{s_1, s_2\}, \{s_2, s_0\})
\]

is $(2/m^2)^3$

of triples i_1, i_2, i_3: $\leq n^3$

∴ $p_3 \leq (m^3)/3 \times (2/m^2)^3 \times n^3 = (2n/m)^3/3$
The general case (exercise):

\[p_k \leq \frac{(2\alpha)^k}{k}, \quad \text{where} \quad \alpha := \frac{n}{m} \]

Therefore,

\[p \leq \sum_{k \geq 1} p_k \leq \sum_{k=1}^{\infty} \frac{(2\alpha)^k}{k} = \ln \left(\frac{1}{1 - 2\alpha} \right) \]

Wolfram Alpha says: \(x \leq 1/2 \implies \ln(1/(1 - x)) \leq 3/4 \)

Implication:

\(\alpha \leq 1/4 \implies \text{failure probability} \leq 3/4 \)
Building a cuckoo hash table

Suppose we attempt to insert n distinct items a_1, \ldots, a_n items into an empty hash table, and stop when an insertion fails.

For $r = 1 \ldots n$, let X_r be the number of swaps performed when we attempt to insert a_r.

Note: $X_r = 0$ if the insertion procedure fails on one of a_1, \ldots, a_r-1.

Assume that $\alpha := n/m \leq 1/4$.

Claim: $\mathbb{E}[X_r] \leq 3/2$.

It follows that

- Expected cost of attempting to insert n items: $O(n)$
- Probability that such an attempt succeeds: $\geq 1/4$
- Expected number of attempts until success: ≤ 4
- Expected cost of building a table: $O(n)$
Claim: \(E[X_r] \leq 3/2 \)

Proof:

Suppose the \(h_1(a_r) = s_0 \) and consider the cuckoo graph corresponding to items \(a_1, \ldots, a_{r-1} \)

Tail sum formula:

\[
E[X_r] = \sum_{k=1}^{n} \Pr[X_r \geq k]
\]

If \(X_r \geq k \), then in the cuckoo graph: **either**

(i) there is a simple path of length \(k \) starting at \(s_0 \):

\[
s_0 \rightarrow s_1 \rightarrow \cdots \rightarrow s_k,
\]

or

(ii) there is a simple loop starting at \(s_0 \):

\[
s_0 \rightarrow \cdots \rightarrow s_{\ell-1} \rightarrow s_j \quad (j < \ell)
\]
Let’s estimate the probability q_k that there is a simple path of length k starting at s_0:

$$s_0 \rightarrow s_1 \rightarrow \cdots \rightarrow s_k$$

of choices for s_1, \ldots, s_k: $\leq m^k$

Probability that

$$(e_{i_1}, \ldots, e_{i_k}) = (\{s_0, s_1\}, \ldots, \{s_{k-1}, s_k\})$$

is $(2/m^2)^k$

of tuples i_1, \ldots, i_k: $\leq n^k$

Therefore,

$$q_k \leq m^k \times (2/m^2)^k \times n^k = (2n/m)^k = (2\alpha)^k$$

$\leq 2^{-k}$ (since $\alpha \leq 1/4$)
Let’s estimate the probability \tilde{q}_ℓ that there is a simple loop of length ℓ starting at s_0

$$s_0 \to \cdots \to s_{\ell-1} \to s_j \quad (j < \ell)$$

Homework:

$$\tilde{q}_\ell \leq \frac{\ell (2\alpha)^\ell}{m}$$

Let $\tilde{q} :=$ probability of any simple loop starting at s_0:

$$\tilde{q} \leq \sum_{\ell \geq 1} \tilde{q}_\ell \leq \frac{1}{m} \sum_{\ell=1}^{\infty} \ell (2\alpha)^\ell = \frac{1}{m} \cdot \frac{2\alpha}{(1 - 2\alpha)^2} \leq \frac{2}{m} \quad \text{(since } \alpha \leq 1/4)$$
Putting it all together:

\[E[X_r] = \sum_{k=1}^{\infty} \Pr[X_r \geq k] \leq \sum_{k=1}^{n} (2^{-k} + 2/m) \leq 1 + 2n/m = 3/2 \]