Hashing (3)
Perfect Hashing

We have n fixed items a_1, \ldots, a_n

We want to be able to build a table with these items, so that lookups take constant time — in the worst case

Basic strategy: universal hashing

$m = \# \text{ slots}$

We don’t want any collisions
Union bound:

\[\Pr[\text{collision}] \leq \sum_{i=1}^{n} \sum_{j=1}^{i-1} \Pr[h_R(a_i) = h_R(a_j)] \]

\[\leq \frac{n(n - 1)}{2m} \]

Assume \(m \geq n(n - 1) \), so that we get a collision with probability \(\leq 1/2 \)

Strategy:

\begin{verbatim}
repeat
 choose a random hash key
 hash \(a_1, \ldots, a_n \) using this key
until no collisions
\end{verbatim}
Good news: each iteration succeeds with probability \(\geq \frac{1}{2} \)

\[\therefore\text{ expected \# of iterations} \leq 2\]

Bad news: *HUGE* table

A better approach: two levels of universal hashing

- Level 1 segregates items so that not too many go into any one slot
- Level 2 applies the basic strategy to each Level-1 slot
Suppose there are $m \geq 2n$ Level-1 slots

Step 1:

repeat
 choose a random hash key R
 hash a_1, \ldots, a_n using R
 let $L_s := \# \text{ items in slot } s$
 let $V' := \sum_s L_s(L_s - 1) = \sum_s L_s^2 - n$
until $V' \leq n$

Step 2:

For each Level-1 slot s, use Basic Strategy to hash all items in slot s into a hash table with (at least) $L_s(L_s - 1)$ slots
Analysis

Tool: Markov’s inequality

let X be a random variable taking non-negative values
let $\mu := E[X]$
For all $t > 0$: $\Pr[X \geq t] \leq \mu/t$
Set $t = 2\mu$: $\Pr[X \geq 2\mu] \leq 1/2$

Step 1:

Previous lecture (Hashing (1)): $E[V'] \leq n^2/m \leq n/2$
Markov says: $\Pr[V' \geq n] \leq 1/2$
\therefore expected # of iterations ≤ 2
Analysis (cont’d)

Step 2:

For each slot s, we build a sub-table with (at least) $L_s(L_s - 1)$ slots

∴ we can quickly find a good key for this sub-table

Summary:

• Total expected running time $= O(n)$
• Total size of data structure $= O(n)$
Another hash application: fast pattern matching

Problem: Given strings $a = a_1 \cdots a_n$, and $b = b_1 \cdots b_t$, test if b is a substring of a

Naive algorithm: time $O(nt)$

Faster algorithms: time $O(n)$ (assume $t \leq n$)

- A simple, randomized algorithm (Karp, Rabin)
- A trickier deterministic algorithm (Knuth, Morris, Pratt)
The Karp/Rabin Algorithm (a variant)

Let $\{h_k\}_{k \in \mathcal{K}}$ be an ϵ-universal family of hash functions on strings of length t

Algorithm:

1. Choose a random key k
2. $s \leftarrow h_k(b)$
3. For $i \leftarrow 1$ to $n - t + 1$
 1. $s_i \leftarrow h_k(a_i \cdots a_{i+t-1})$
 2. If $s = s_i$
 1. If $b = a_i \cdots a_{i+t-1}$ then
 1. Return match
 2. Return no match
Running time analysis: two factors

- time to compute hash function
- expected time spent processing “false positives”: $O(\epsilon \cdot n \cdot t)$

Use “polynomial evaluation” hash:

- view a_i’s, b_j’s, k as elements of \mathbb{Z}_p, where p is prime
- $h_k(a_1 \cdots a_t) = a_1 k^{t-1} + \cdots + a_t$
- $\epsilon = t/p$
- time to evaluate each h_k: $O(t)$ naively, but we can do better
Computing a “Rolling Hash”

\[a_1 k^{t-1} + a_2 k^{t-2} + \cdots + a_t \]
\[-a_1 k^{t-1} \]

\[a_2 k^{t-2} + \cdots + a_t \times k \]

\[a_2 k^{t-1} + \cdots + a_t k + a_{t+1} \]
Karp/Rabin: conclusions

Assume \(p \) is near machine word size (e.g., \(2^{64} \))

Assume arithmetic in \(\mathbb{Z}_p \) takes time \(O(1) \)

Time to compute hashes: \(O(n) \)

Expected time to process false positives: \(O(nt^2/p) \),
which is \(O(n) \) for “reasonable” \(t \) (e.g., \(t < 2^{32} \))

Karp/Rabin: not the fastest, but for multi-pattern matching, it is very good (details: exercise)
Beyond Pairwise independence: Uniform Hashing Assumption

Let $\mathcal{H} = \{h_k\}_{k \in \mathcal{K}}$ be a family of hash functions, $h_k : \mathcal{U} \to \{0, \ldots, m-1\}$

Let R be uniformly distributed over \mathcal{K}

Uniform Hashing Assumption:

The random variables $h_R(a)$ for $a \in \mathcal{U}$ are mutually independent, with each $h_R(a)$ uniformly distributed over $\{0, \ldots, m-1\}$
A very strong assumption
Hard to achieve in practice
Often the assumption is just heuristically applied
 “off the shelf” cryptographic functions
The Max Load — Revisited

Suppose we hash n items into n slots
Let $M = \text{max # of data items that hash to any one slot}$

Theorem. Under the Uniform Hashing Assumption,

$$E[M] = O\left(\frac{\log n}{\log \log n}\right).$$

Note: compare to $O(\sqrt{n})$ for pairwise independent hashing
Recall tail sum formula:

If X be a random variable that takes only non-negative integer values, then

$$E[X] = \sum_{j \geq 1} Pr[X \geq j]$$

Proof of Theorem.

Claim 1: for $j = 1, \ldots, n$: $Pr[M \geq j] \leq n/j!$

Proof: We are hashing a_1, \ldots, a_n

$M \geq j$ iff for some subset of indices $\{i_1, \ldots, i_j\}$, the items a_{i_1}, \ldots, a_{i_j} hash to the same slot

For any fixed subset, this happens with probability $1/n^{j-1}$:

- a_{i_1} can hash into any slot s
- the other $j – 1$ must hash into slot s
Summing over all subsets of size j:

$$\Pr[M \geq j] \leq \binom{n}{j} \cdot \frac{1}{n^{j-1}}$$

$$= \frac{n(n-1)\cdots(n-j+1)}{j!} \cdot \frac{1}{n^{j-1}}$$

$$\leq \frac{n}{j!}$$

That proves the claim
Define \(f(n) := \text{least } j \text{ such that } n/j! \leq 1 \)

Claim 2: \(f(n) = O(\log n / \log \log n) \)

Sketch: we want \(\log n \leq \log j! \approx j \log j \)

This happens when \(j \) is roughly \(\log n / \log \log n \)

We have

\[
E[M] = \sum_{j \geq 1} \Pr[M \geq j]
= \sum_{j \leq f(n)} \Pr[M \geq j] + \sum_{j > f(n)} \Pr[M \geq j]
\leq f(n) + \sum_{j > f(n)} \frac{n}{j!}
\leq f(n) + \sum_{i \geq 1} \frac{1}{2^i}
= f(n) + 1 = O(\log n / \log \log n) \quad \text{QED}
\]
Bloom Filters

A fixed set \(S = \{a_1, \ldots, a_n\} \subseteq \mathcal{U} \)

Data structure: an array of \(m \) bits

Use \(l \) hash functions \(h_1, \ldots, h_l \)

set bits \(h_i(a_j) \) for \(i = 1, \ldots, l, j = 1, \ldots, n \)

to test if \(a \in \mathcal{U} \):

- test if bits \(h_1(a), \ldots, h_l(a) \) are all set

Pros: very compact (just a bit vector – no pointer, no data)

Cons: “false positives”
Analysis: $a \notin S$ is a false positive if
\[\forall i' \exists j, i : h_{i'}(a) = h_i(a_j) \]

For any fixed i', j, i:
\[\Pr[h_{i'}(a) = h_i(a_j)] = \frac{1}{m} \]

For any fixed i':
\[\Pr\left[\forall j, i : h_{i'}(a) \neq h_i(a_j) \right] = (1 - \frac{1}{m})^{n\ell} \]

False positive rate:
\[\Pr\left[\forall i' \exists j, i : h_{i'}(a) = h_i(a_j) \right] = \left(1 - (1 - \frac{1}{m})^{n\ell}\right)^\ell \]
Use the approximation $1 + x \approx e^x$

False positive rate:

$$\left(1 - (1 - 1/m)^{n\ell} \right)^\ell \approx (1 - e^{-\ell n/m})^\ell$$

For fixed m/n, this is minimized at $\ell = (m/n) \ln 2$

For this ℓ, false positive rate $\approx (0.62)^{m/n}$

Example: $m/n = 10$

<table>
<thead>
<tr>
<th>ℓ</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0952</td>
<td>0.0329</td>
<td>0.0174</td>
<td>0.0118</td>
<td>0.00943</td>
<td>0.00844</td>
<td>0.00819</td>
<td>0.00846</td>
</tr>
</tbody>
</table>

We get $< 1\%$ false positive rate with 10 bits per dictionary entry
Bloom Filters: applications

Faster database lookup:
- Minimize access to large/slow memory

Distributed Web caching / P2P networks:
- Keep track of data stored at other nodes compactly using Bloom filters

Distributed set intersection:
- Avoid transmitting large data sets — send Bloom filters and compute bit-wise AND

For more applications, see

Network Applications of Bloom Filters: A Survey
Broder and Mitzenmacher