Graphs

\(G = (V, E) \), \(V \) = set of nodes (a.k.a., vertices) \(E \) = set of edges

\(G \) is usually assumed to be directed, so that an edge is a pair of nodes \((u, v)\) (graphically, \(u \to v \))

If \((u, v) \in E\), let’s call \(v \) a successor of \(u \), and \(u \) a predecessor of \(v \)

\(\text{Successor}(u) := \) set of all successors of \(u \)

An undirected graph is just a special case of a directed graph, where \((u, v) \in E \Rightarrow (v, u) \in E\)

One usually assumes an undirected graph contains no self loops, i.e., edges \((u, u)\)
Representations

- **Sparse**: an array of adjacency lists

an array A indexed by V, where $A[u]$ is a linked list containing all successors of u

 size: $O(|V| + |E|)$

 this will be the “default”

- **Dense**: an boolean array A indexed by $V \times V$, where $A[u, v] = true$ iff $(u, v) \in E$

 size: $O(|V|^2)$
Breadth first search (BFS)

Input: a graph \(G = (V, E) \), and a node \(s \in V \)

Outputs:

- the “shortest distance” array \(d \), indexed by \(V \), so that \(d[\nu] = \) length of shortest path from \(s \) to \(\nu \)
- a “breadth first search” tree \(T \), represented as an array \(\pi \) indexed by \(V \)
 \(\pi[\nu] = u \) means \(u \) is \(\nu \)'s parent in \(T \)
 the root \(T \) is \(s \), and paths in \(T \) are shortest paths in \(G \)
Algorithm \textit{BFS}(G, s):

for each \(v \in V \)
\begin{align*}
Color[v] &\leftarrow \text{white} \quad // \text{undiscovered} \\
 d[v] &\leftarrow \infty, \pi[v] \leftarrow \text{Nil}
\end{align*}
\begin{align*}
Color[s] &\leftarrow \text{gray} \quad // \text{discovered} \\
d[s] &\leftarrow 0, \pi[s] \leftarrow \text{Nil}
\end{align*}

\begin{align*}
Q &\leftarrow \text{NewQueue()} \quad // \text{a FIFO queue} \\
Q.\text{enqueue}(s)
\end{align*}

while not Q.\text{empty}() do
\begin{align*}
u &\leftarrow Q.\text{dequeue}()
\end{align*}
\begin{align*}
\text{for each } v \in \text{Successor}(u) \text{ do}
 \text{if } Color[v] = \text{white} \text{ then}
 \begin{align*}
 Color[v] &\leftarrow \text{gray} \quad // \text{discovered} \\
d[v] &\leftarrow d[u] + 1, \pi[v] \leftarrow u \\
 Q.\text{enqueue}(v)
 \end{align*}
\end{align*}
\begin{align*}
Color[u] &\leftarrow \text{black} \quad // \text{finished}
\end{align*}
Example:

BFS Tree:
Running time:

- Each node enqueued at most once (by coloring)
- Each node dequeued at most
- Each adjacency list scanned at most once
- \(\therefore \) Running time \(= O(|V| + |E|) \)

Invariant:

- At the beginning of each loop iteration, \(Q \) contains all nodes that are colored \textit{gray}.
Correctness

Notation: \(d[\nu] = \text{computed distance} \)
\(\delta(s, \nu) = \text{length of shortest path from } s \text{ to } \nu \)

Shortest Path Lemma
If \(\delta(s, \nu) = m > 0 \), then \(\nu \) is the successor of some node \(u \) with \(\delta(s, u) = m - 1 \)

Proof:
- Consider a shortest path from \(s \) to \(\nu \):
 \[
 s \rightarrow u \rightarrow \nu
 \]

- The path \(s \rightarrow u \) must be a shortest path from \(s \) to \(u \) (otherwise, we could find an even shorter path to \(\nu \)). QED
Theorem
Algorithm BFS eventually discovers every node reachable from s

Prove by induction on m:

for all $v \in V$, if $\delta(s, v) = m$, then BFS discovers v

$m = 0$: clear; $m > 0$:

• Suppose $v \in V$ with $\delta(s, v) = m$

• By Shortest Path Lemma, v has a predecessor u with $\delta(s, u) = m - 1$

• By induction, BFS discovered u, and placed u in Q

• When BFS removes u from Q, it discovers v (or finds that it was already discovered)
Theorem

BFS correctly computes $d[v] = \delta(s, v)$ for all $v \in V$

Proof:

- Let v_0, v_1, \ldots be the nodes listed in the order they are removed from Q
- We can partition the execution of BFS into epochs $0, 1, 2, \ldots$

 \[
 v_0, \ldots, v_{j_0}, \quad v_{j_0+1}, \ldots, v_{j_1}, \ldots
 \]

 \underline{epoch 0} \quad \underline{epoch 1}

- A new epoch starts at v_j if $\delta(s, v_j) \neq \delta(s, v_{j-1})$
Prove by induction on i:

At the beginning of epoch i, Q contains precisely all nodes v such that $\delta(s, v) = i$, and $d[v] = i$ for all these nodes

$i = 0$: clear

Assume for $0, \ldots, i$ and prove for $i + 1$:

- During epoch i, by the lemma, and the induction hypothesis, all nodes v with $\delta(s, v) = i + 1$ will be discovered and placed at the end of Q during epoch i

- Epoch i ends when all nodes v with $\delta(s, v) = i$ have been removed from Q

QED. One can also easily show that T is correct
Depth First Search (DFS)

Algorithm DFS(G):

for each $v \in V$ do: $\text{Color}[v] \leftarrow \text{white}$, $\pi[v] \leftarrow \text{Nil}$
$\text{time} \leftarrow 0$
for each $v \in V$ do
 if $\text{Color}[v] = \text{white}$ then $\text{RecDFS}(v)$

Algorithm RecDFS(u):

$\text{Color}[u] \leftarrow \text{gray}$
$d[u] \leftarrow ++\text{time}$ // discovery time
for each $v \in \text{Successor}(u)$ do:
 if $\text{Color}[v] = \text{white}$ then
 $\pi[v] \leftarrow u$, $\text{RecDFS}(v)$
$\text{Color}[u] \leftarrow \text{black}$
$f[u] \leftarrow ++\text{time}$ // finish time
DFS Forest:

- Tree edge
- Forward edge
- Back edge
- Cross edge
Running Time Analysis:

- Each node is discovered once
- Each edge is traversed once
- Running time $= O(|V| + |E|)$
u discovered
- grey nodes are on run-time stack

u finished

Some Back, Forward, and Cross edges
For $u, v \in V$, “$u \subseteq v$” means that u is a descendent of v in the DFS forest (possibly $u = v$), and “$u \sqsubseteq v$” means u is a proper descendent of v (so $u \neq v$)

Parenthesis Theorem

For all $u, v \in V$, exactly one of the following holds:

1. $[d[u], f[u]] \cap [d[v], f[v]] = \emptyset$, $u \not\subseteq v$, and $v \not\subseteq u$

2. $[d[u], f[u]] \subseteq [d[v], f[v]]$, and $u \subseteq v$

3. $[d[u], f[u]] \supseteq [d[v], f[v]]$, and $u \supseteq v$
Classification of edge $u \rightarrow \nu$

- **Tree edge:** in the DFS forest ($u \subseteq \nu$)
 - ν was white when $u \rightarrow \nu$ was explored; $(d[u] < d[\nu] < f[\nu] < f[u])$

- **Back edge:** $u \subseteq \nu$ (includes self loops)
 - ν was gray when $u \rightarrow \nu$ was explored
 - $(d[\nu] \leq d[u] < f[u] \leq f[\nu])$

- **Forward edge:** a non-tree edge, $u \supseteq \nu$
 - ν was black when $u \rightarrow \nu$ was explored, but white when u was discovered
 - $(d[u] < d[\nu] < f[\nu] < f[u])$

- **Cross edge:** $u \not\subseteq \nu$ and $u \not\supseteq \nu$
 - ν was black when $u \rightarrow \nu$ was explored, and black when u was discovered;
 - $(d[\nu] < f[\nu] < d[u] < f[u])$
 - points “into the past” (right to left)
White Path Theorem

Let $u, v \in V$.

$u \supseteq v \iff \begin{cases} \text{at the time } u \text{ is discovered, there is} \\ \text{a path from } u \text{ to } v \text{ consisting only of white nodes} \end{cases}$

(\Rightarrow) Assume $u \supseteq v$
White Path Theorem

Let \(u, v \in V \).

\[u \trianglerighteq v \iff \text{at the time } u \text{ is discovered, there is a path from } u \text{ to } v \text{ consisting only of white nodes} \]

\(\Leftarrow \) Let \(u = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_k = v \) be the white path.

Claim: \(u \trianglerighteq v_i \) for all \(i \). Assume not, and let \(i \) be minimal such that \(u \not\trianglerighteq v_i \ (i > 0) \Rightarrow \Leftarrow \)
Topological Sorting

Suppose \(G = (V, E) \) is a DAG (Directed Acyclic Graph)

A topological sort of \(G \) is an ordering of the vertices \(v_1, v_2, \ldots, v_n \) such that \((v_i, v_j) \in E \implies i < j\)

“all arrows go from left to right”

Algorithm TopSort

- initialize an empty list
- Run DFS: When a node is painted \textit{black}, insert it at the front of the list

So we output vertices on order of \textit{decreasing} finishing time
Lemma

G has a cycle \iff DFS produces a back edge

Proof:

- (\Leftarrow) A back edge trivially yields a cycle
\(\Rightarrow \) Suppose \(G \) has a cycle \(C \) of vertices, and let \(v \) be the first vertex discovered in \(C \):

By the White Path Theorem, \(u \) is a descendent of \(v \) in the DFS forest.

\[\therefore \text{the edge } u \to v \text{ is a back edge} \]
Theorem

Algorithm TopSort is correct

Proof:

• Let \((u, v) \in E\)

• We want to show \(f[u] > f[v]\)

• Cases:
 ◦ \((u, v)\) is a tree edge: \(u \preceq v\) and \(d[u] < d[v] < f[v] < f[u]\)
 ◦ \((u, v)\) is a back edge: impossible, since \(G\) is acyclic
 ◦ \((u, v)\) is a forward edge: \(u \preceq v\) and \(d[u] < d[v] < f[v] < f[u]\)
 ◦ \((u, v)\) is a cross edge: \(f[v] < d[u] < f[u]\)

• QED