Strongly Connected Components

Let \(G = (V, E) \) be a directed graph.

Write \(u \rightsquigarrow v \) if there is a path from \(u \) to \(v \) in \(G \).

Write \(u \sim v \) if \(u \rightsquigarrow v \) and \(v \rightsquigarrow u \).

\(\sim \) is an equivalence relation:

- \(u \sim u \)
- \(u \sim v \) implies \(v \sim u \)
- \(u \sim v \) and \(v \sim w \) implies \(u \sim w \)

\(\sim \)'s equivalence classes are called the strongly connected components (SCC's) of \(G \).

For \(v \in V \), \(C(v) := v \)'s SCC.
The component graph

Idea: collapse each SCC’s into a single node

Formally: component graph $G^{\text{SCC}} = (V^{\text{SCC}}, E^{\text{SCC}})$

$V^{\text{SCC}} = \text{the SCC’s } C_1, \ldots, C_k \text{ of } G$

$E^{\text{SCC}} = \{(C_i, C_j) : i \neq j, (u, v) \in E \text{ for some } u \in C_i, v \in C_j\}$
Lemma 1. $u \rightsquigarrow v$ in $G \iff C(u) \rightsquigarrow C(v)$ in G^{SCC}
Lemma 2. G^{scc} is acyclic.

- Suppose there is a cycle.
- By definition, no self loops in G^{scc}, so the cycle must contain two distinct nodes, say $C(u)$ and $C(\nu)$.
- Then we have $C(u) \Rightarrow C(\nu)$ and $C(\nu) \Rightarrow C(u)$ in G^{scc}.
- By Lemma 1, $u \Rightarrow \nu$ and $\nu \Rightarrow u$ in G.
- Thus, $C(u) = C(\nu) \Rightarrow\Leftarrow$.
- QED.
An application

Scheduling with constraints:

• We want to schedule a set of tasks

• Each task is represented by a node in a directed graph G

• Edges in G represent scheduling constraints: if
 ○ v and w are distinct tasks,
 ○ there is a path from v to w in G, and
 ○ both v and w are performed,
then v must be performed before w

• Each task has a profit associated with it: we want to schedule tasks to maximize profit
A solution:

1. Compute component graph, topologically sorted

2. For each SCC, select the task with maximum profit

3. Output the tasks from Step 2 in the topological order

![Graph G](image)

Profits: \(a = 1, b = 2, c = 3\), etc.

Optimal schedule: \(e, d, g, h\)
Special case: G is undirected

$(u, v) \in E \iff (v, u) \in E$

SCC’s are just called *connected components*

The component graph consists of isolated nodes — no edges between components

Easy to compute: the trees in the DFS forest are the connected components
Computing SCC’s

For a graph G, let G^T denote its “transpose” or “reverse” — same as G but with all edges reversed.

G and G^T have the same SCC’s — in fact, $(G^T)_{scc} = (G_{scc})^T$.

Algorithm $SCC(G)$:

1. call $DFS(G)$, and order the nodes v_1, \ldots, v_n in order of decreasing finishing time (as in $TopSort$).
2. compute G^T.
3. call $DFS(G^T)$ — but in the top-level loop, process in the order v_1, \ldots, v_n.
 the trees in the DFS forest are the SCC’s of G.

Running time: $O(|V| + |E|)$.
Example:
Notation: let $f[u]$ be the finish time in the first DFS, and let $f(U) := \max\{f[u] : u \in U\}$

Lemma 3. Suppose $(C, C') \in E^{scc}$. Then $f(C) > f(C')$

Proof. In the first DFS, let x be the first node discovered in $C \cup C'$

Case 1: $x \in C$

By the White Path Theorem, all nodes in $C \cup C'$ are descendents of x in the DFS forest

By the Parenthesis Theorem, $f[x] = f(C) > f(C')$
Case 2: \(x \in C' \)

By the White Path Theorem, all nodes in \(C' \) are descendents of \(x \) in the DFS forest

By Lemma 2, there is no path from \(C' \) to \(C \) in \(G^{scc} \), and so no node in \(C \) is reachable from \(x \) so at time \(f[x] \), all nodes in \(C \) are still white

\[f(C) > f[x] = f(C') \]

QED
Theorem. Algorithm SCC is correct.

Proof. Let T_1, \ldots, T_ℓ be the trees of the DFS forest created in step 3

Let C_1, \ldots, C_k be the SCC’s, with $f(C_i) > f(C_{i+1})$
At step 3, we start with a vertex x_1 in C_1

By White Path Theorem, all nodes in C_1 will be in T_1

By Lemma 3, in G^T, there are no edges leaving C_1

∴ the nodes of C_1 are exactly the nodes of T_1
Next, we pick a node in C_2, and at this time, all nodes in C_1 are black, and all nodes in C_2, \ldots, C_k are white.

By White Path Theorem, T_2 contains all nodes in C_2, and by Lemma 3, T_2 contains no other nodes.

\therefore the nodes of C_2 are exactly the nodes of T_2.

Proceeding by induction, we get $T_i = C_i$ for $i = 1, \ldots, \ell$, and so $k = \ell$. QED
Representation of G^{SCC}

- Let C_1, \ldots, C_k be the SCC’s.
- Number the nodes $1 \ldots k$.
- Standard adjacency list representation of G^{SCC}.
- Also:
 - An array mapping $v \in V$ to $j \in \{1, \ldots, k\}$, where $v \in C_j$.
 - An array mapping $j \in \{1, \ldots, k\}$ to a list representation of C_j.
- This can all be done in time $O(|V| + |E|)$, and we may assume that C_1, \ldots, C_k are already in topological order — *in fact Algorithm SCC outputs C_1, \ldots, C_k in topological order*.