Divide and Conquer
Divide and Conquer:
a (somewhat) general theorem

The setup: a recursive algorithm that on inputs of size $n \geq n_0$, recursively solves

- $\leq a$ smaller sub-problems,
- each of size $\leq n/b + c$,
- with a “local” running time $\leq dn^e$

where n_0, a, b, c, d, e are constants

"$T(n) \leq aT(n/b + c) + O(n^e)$"

Simplification: assume $c = 0$

General case: exercise
Recursion tree analysis

At level 1, size ≤ \(n/b \)

At level 2, size ≤ \(n/b^2 \)

...

At level \(j \), size ≤ \(n/b^j \)

At level \(j \), there are ≤ \(a^j \) nodes

Set \(k := \lfloor \log_b n \rfloor \), so \(n ≤ b^k < bn \)

Level \(k \) is the last level in the tree

Let \(w = \) sum of costs at levels \(0, \ldots, k \)

For each \(j = 0 \ldots k \), sum of costs at level \(j \) is

\[\leq a^j \cdot d(n/b^j)^e = d \cdot n^e(a/b^e)^j \]
Therefore,

\[w \leq d \cdot n^e \sum_{j=0}^{k} \delta^j, \]

where \(\delta := a/b^e \)

Case 1: \(\delta < 1 \)

\[\sum_{j=0}^{\infty} \delta^j = 1/(1 - \delta) \implies w \leq (d/(1 - \delta))n^e \]

Total running time = \(O(n^e) \)

Case 2: \(\delta = 1 \)

\[\sum_{j=0}^{k} \delta^j = (k + 1) \implies w \leq d(k + 1)n^e \]

Total running time = \(O(n^e \log n) \)
Case 3: $\delta > 1$

$$\sum_{j=0}^{k} \delta^j = \frac{\delta^{k+1} - 1}{\delta - 1}$$

and so for some constant C, we have

$$w \leq Cn^e \delta^k = Cn^e a^k / (b^k)^e \leq Ca^k$$

$$\leq Ca^{\log_b n + 1} = Ca \cdot a^{\log_b n}$$

$$= Ca \cdot b^{\log_b a \cdot \log_b n}$$

$$= Ca \cdot n^{\log_b a}$$

Total running time $= O(n^{\log_b a})$
Summarizing — the “Master Theorem”

Let $f := \log_b a$

Case 1: $e > f \implies O(n^e)$

Case 2: $e = f \implies O(n^e \log n)$

Case 3: $e < f \implies O(n^f)$
Application: faster multiplication

Problem: multiply two n-bit integers

An “n-bit integer” is an integer a such that $0 \leq a < 2^n$

An n-bit integer can be represented using an array of n bits

In practice, one packs several bits into a “word”
Addition of n-bit integers

The sum of two n-bit integers is an $(n + 1)$-bit integer, and can be computed in time $O(n)$

input: $a = (a_{n-1}, \ldots, a_0)$, $b = (b_{n-1}, \ldots, b_0)$
output: $c = (c_n, c_{n-1}, \ldots, c_0)$

$carry \leftarrow 0$
for i in $[0..n)$ do
 $t \leftarrow a_i + b_i + carry$
 $c_i \leftarrow t \mod 2$
 $carry \leftarrow \lfloor t/2 \rfloor$
$c_n \leftarrow carry$
Multiplication of \(n \)-bit integers

The product of two \(n \)-bit integers is a \((2n)\)-bit integer, and can be computed in time \(O(n^2) \)

input: \(a = (a_{n-1}, \ldots, a_0) \), \(b = (b_{n-1}, \ldots, b_0) \)
output: \(c = (c_{2n-1}, \ldots, c_0) \)

initialize \(c_i \leftarrow 0 \) for \(i \) in \([0..2n)\)

for \(i \) in \([0..n)\) do

 // \(c \leftarrow c + 2^i b_i \cdot a \)
 carry \leftarrow 0

 for \(j \) in \([0..n)\) do

 \(t \leftarrow c_{i+j} + b_i \cdot a_j + \text{carry} \)
 \(c_{i+j} \leftarrow t \mod 2 \)
 \(\text{carry} \leftarrow \lfloor t/2 \rfloor \)

 \(c_{i+n} \leftarrow \text{carry} \)
Karatsuba’s multiplication algorithm

Input: two n-bit integers, a and b

If n is “very small”, use the naive algorithm.

Otherwise, divide each number into two pieces:

$$a = a_{hi}2^k + a_{lo}$$

$$b = b_{hi}2^k + b_{lo},$$

where $k := \lfloor n/2 \rfloor$

<table>
<thead>
<tr>
<th>a:</th>
<th>a_{hi}</th>
<th>a_{lo}</th>
</tr>
</thead>
<tbody>
<tr>
<td>b:</td>
<td>b_{hi}</td>
<td>b_{lo}</td>
</tr>
</tbody>
</table>
\[ab = a_{hi}b_{hi}2^{2k} + (a_{hi}b_{lo} + a_{lo}b_{hi})2^k + a_{lo}b_{lo} \]

\[\approx n \]

\[a_{hi}b_{hi} \]

\[a_{hi}b_{lo} + a_{lo}b_{hi} \]

\[a_{lo}b_{lo} \]

\[ab \]

\[\approx 2n \]
One idea:
Recursively compute the four sub-products
\[a_{hi}b_{hi}, \ a_{hi}b_{lo}, \ a_{lo}b_{hi}, \ a_{lo}b_{lo} \]
Case 3 of Master Theorem: \(e = 1, f = \log_2 4 = 2 \)
\[\implies \text{another } O(n^2) \text{ algorithm} \]

A better idea:
Compute \(A \leftarrow a_{hi} + a_{lo}, \ B \leftarrow b_{hi} + b_{lo} \)
Recursively compute three products:
\[H \leftarrow a_{hi}b_{hi}, \ L \leftarrow a_{lo}b_{lo}, \ F \leftarrow AB \]
Observations:
\[F = a_{hi}b_{hi} + a_{hi}b_{lo} + a_{lo}b_{hi} + a_{lo}b_{lo} \]
\[M := F - (H + L) = a_{hi}b_{lo} + a_{lo}b_{hi} \]
\[P := H2^{2k} + M2^k + L = ab \]
Case 3 of Master Theorem: \(e = 1, f = \log_2 3 \approx 1.585 \)
Running time is \(O(n^{\log_2 3}) \)
Notes:

• Karatsuba is *not* the fastest method: using the Fast Fourier Transform, one can multiply two n-bit integers in time $O(n \log n \log \log n)$

• For n (roughly) in the range 500–10,000, Karatsuba is the fastest

• You use it every time you buy something from amazon.com, or use ssh — it’s used to implement public-key cryptosystems