Division with remainder
A more familiar setting: the integers \mathbb{Z}

For all $a \in \mathbb{Z}$, $b \in \mathbb{Z}_{>0}$, there exist unique $q, r \in \mathbb{Z}$ such that

$$a = bq + r \quad \text{and} \quad 0 \leq r < b$$

Algorithms: suppose b has (exactly) n bits and a is at most 2^n bits

- grade school algorithm: time $O(n^2)$
- *general fact:* division is no harder than multiplication
Polynomial division with remainder

Let $f, g \in R[X]$ with g monic (i.e., leading coefficient 1) There exist unique $q, r \in R[X]$ such that

$$f = gq + r \text{ and } \deg(r) < \deg(g)$$

Fact: if $\deg(f) \geq \deg(g)$, then $\deg(q) = \deg(f) - \deg(g)$

Algorithms:

- grade school: quadratic time
- general fact: division is no harder than multiplication

Note: if we compute q, we can compute r as $r = f - gq$, using a single polynomial multiplication

\implies Let’s focus on computing q
Preliminaries: the polynomial “reverse” operation

Suppose \(f = \sum_{i=0}^{m} a_i X^i \), with \(a_m \neq 0 \) (so \(\deg(f) = m \))

Define the reverse of \(f \): \(\text{Rev}(f) = \sum_{i=0}^{m} a_i X^{m-i} \)

Suppose \(g \in R[X] \), monic, \(\deg(g) = n \leq m \), and let

\[f = gq + r \quad (\deg(r) < n, \ \deg(q) = m - n) \]

Lemma 1:

\[\text{Rev}(f) \equiv \text{Rev}(g) \text{Rev}(q) \pmod{X^{m-n+1}} \]

Notation: \(u \equiv v \pmod{X^k} \) means \(u = v + X^k w \) for some polynomial \(w \)
Polynomial arithmetic mod X^k

$u \equiv v \pmod{X^k} \iff$ low-order k terms of u and v agree

If $u \equiv u' \pmod{X^k}$ and $v \equiv v' \pmod{X^k}$, then

$u + v \equiv u' + v' \pmod{X^k}$ and $u \cdot v \equiv u' \cdot v' \pmod{X^k}$

Lemma 2: If $u \in R[X]$ with constant term 1 and k is a positive integer, there exists $v \in R[X]$ such that $uv \equiv 1 \pmod{X^k}$

Note: v is called an inverse of u mod X^k
Using the lemmas

Since g is monic, $\text{Rev}(g)$ has constant term 1

Lemma 2 says $\text{Rev}(g)$ has an inverse ν mod X^{m-n+1}:

$$\text{Rev}(g) \cdot \nu \equiv 1 \pmod{X^{m-n+1}}, \quad \deg(\nu) \leq m - n$$

Lemma 1 says

$$\text{Rev}(f) \equiv \text{Rev}(g) \text{Rev}(q) \pmod{X^{m-n+1}} \quad (\ast)$$

Multiply both sides of (\ast) by ν:

$$\nu \text{Rev}(f) \equiv \nu \text{Rev}(g) \text{Rev}(q) \equiv 1 \cdot \text{Rev}(q)$$

$$\equiv \text{Rev}(q) \pmod{X^{m-n+1}}$$

Overall strategy to compute q:

1. Compute inverse ν of $\text{Rev}(g)$ mod X^{m-n+1}
2. Compute the product $p = \nu \text{Rev}(f)$
3. Output the low-order $m - n + 1$ terms of p, reversed
Lemma 1:

\[\text{Rev}(f) \equiv \text{Rev}(g) \text{Rev}(q) \pmod{X^{m-n+1}} \]

Proof:

Observation: if \(f = \sum_{i=0}^{m} a_i X^i \), then

\[
\text{Rev}(f) = \sum_{i=0}^{m} a_i X^{m-i} = X^m \sum_{i=0}^{m} a_i X^{-i} = X^m f(X^{-1})
\]

Since \(f = gq + r \), with \(\deg(r) < n \), we have

\[
\text{Rev}(f) = X^m f(X^{-1}) = X^m \left(g(X^{-1})q(X^{-1}) + r(X^{-1}) \right)
= X^n g(X^{-1}) \cdot X^{m-n} q(X^{-1}) + X^m r(X^{-1})
= \text{Rev}(g) \text{Rev}(q) + X^m r(X^{-1})
\equiv \text{Rev}(g) \text{Rev}(q) \pmod{X^{m-n+1}}
\]
Lemma 2: If \(u \in R[X] \) with constant term 1 and \(k \) is a positive integer, there exists \(v \in R[X] \) such that \(uv \equiv 1 \pmod{X^k} \)

Proof: We will give a proof by induction that naturally leads to an efficient “divide and conquer” algorithm.

Base case, \(k = 1 \): since \(u \equiv 1 \pmod{X} \), we can take \(v = 1 \).
Inductive step, \(k > 1 \):
Let \(k = \lfloor k/2 \rfloor \) and suppose \(uv_0 \equiv 1 \pmod{X^l} \)
This means \(uv_0 = 1 + X^l w \) for some \(w \in R[X] \)
We shall write
\[
u(\nu_0 + X^l \nu_1) \equiv 1 \pmod{X^k}
\]
and solve for \(\nu_1 \)
We have
\[
u(\nu_0 + X^l \nu_1) = uv_0 + X^l uv_1 = 1 + X^l (w + uv_1)
\]
So it suffices to find \(\nu_1 \) such that
\[
w + uv_1 \equiv 0 \pmod{X^{k-l}}
\]
and \(\nu_1 := -\nu_0 w \) does the job, since
\[
w + uv_1 \equiv w - uv_0 w = w(1 - uv_0) \equiv 0 \pmod{X^l}
\]
Algorithm $\text{Invert}(u, k)$:

Input: $u \in R[X]$ with constant term 1 and $\deg(u) < k$

Output: $v \in R[X]$ with $uv \equiv 1 \pmod{X^k}$ and $\deg(v) < k$

If $k = 1$, return 1

Otherwise, recursively compute

$$v_0 := \text{Invert}(u_0, \ell)$$

where $\ell := \lceil k/2 \rceil$ and $u_0 :=$ low-order ℓ terms of u

Compute $u \cdot v_0$, which is of the form $1 + X^\ell w$

Compute $v_1 := -v_0 \cdot w$

Set $v :=$ low-order k terms of $v_0 + X^\ell v_1$

Return v
Running time analysis

Suppose we can multiply polynomials of degree at most \(k \) using \(M(k) \) operations in \(R \)

Let \(T(k) \) be the number of operations performed by the recursive inversion algorithm

We have

\[
T(k) \leq T(\lceil k/2 \rceil) + O(M(k))
\]

This implies \(T(k) = O(M(k)) \)

Technical note: this assumes \(M(k) \) is “reasonable”:

\[
1 \leq \frac{M(a + b)}{M(a) + M(b)} \leq C
\]

for some constant \(C \) and all \(a, b \)
Summary:

- Polynomial division is no harder than multiplication (up to a constant factor)

 - More formally: given \(f, g \in R[X] \), where \(g \) is monic, \(\deg(g) = n \), and \(\deg(f) < 2n \), we can compute \(q, r \in R[X] \) such that \(f = gq + r \) and \(\deg(r) < n \) using \(O(M(n)) \) operations in \(R \)

- The same holds for integer division (details are slightly messier)