2-3 Trees
Dictionary data type

Dictionary operations

- Insert
- Search
- Delete

2-3 trees:

- A kind of balanced search tree
- Assume data items are totally ordered (<, >, =)
- Assume n items in the dictionary
- Time per dictionary operation is $O(\log n)$
- Support of other useful operations as well
Basic structure: a tree

- Data stored only at leaves (no duplicates)
- All leaves at the same level, in sorted order
- Each internal node:
 - has either 2 or 3 children
 - has a “guide”: the maximum data item in its subtree

Let $h :=$ height of tree

$n \geq 2^h$ — why? because every internal node has at least two children

$\therefore h \leq \log_2 n$
Example
Search(x): use guides

Insert(x): Search for x, and if it should belong under p:

- add x as a child of p (if not already present)
- if p now has 4 children:
 - split p into two two nodes, p_1 and p_2, each with two children
 - process p’s parent in the same way
 - Special case: no parent — create new root, increasing height of tree by 1

Also need to update “guides” — easy

Time = $O(\text{height}) = O(\log n)$
Case when p ends up with 4 children
Delete(x): Search for x, and if found under p:

remove x

if p now only has one child:

• if p is the root: delete p (height decreases by 1)
• if one of p’s siblings has 3 children: borrow one
• if none of p’s siblings has 3 children:
 ◦ one sibling q must have 2 children
 ◦ give p’s only child to q
 ◦ delete p
 ◦ process p’s parent
Easy case: borrow from sibling
Harder case: give away only child

\[q \]
\[v \quad w \]

\[p \]
\[x \quad y \]

\[q \]
\[v \quad w \quad y \]

\[p \]
2-3 trees: summary

Assume n items in dictionary

Running time for lookup, insert, delete:
 $O(\log n)$ comparisons, plus $O(\log n)$ overhead

Space: $O(n)$ pointers
2-3 Trees: Join and Split

$\text{Join}(T_1, T_2)$ joins two 2-3 trees in time $O(\log n)$

Assume $\max(T_1) < \min(T_2)$

Assume T_i has height h_i for $i = 1, 2$

Case 1: $h_1 = h_2$
Case 2: $h_1 < h_2$

- Attach v as the left-most child of p
- If p now has 4 children, we split p, and proceed up the tree as in Insert
- Time: $O(h_2 - h_1) = O(\log n)$

Case 3: $h_1 > h_2$ — similar
Split(T, x) \iff ($T_1 \leq x$, $T_2 \geq x$)

join from inside out
Observations:

- Initially: at most 2 trees of any given height — except there may be 3 of height 0

- Let T_1, T_2 have heights h_1, h_2, where $h_1 \geq h_2$

 Then $Join(T_1, T_2)$ takes time $O(h_1 - h_2 + 1)$, and produces a tree of height h_1 or $h_1 + 1$

- Let T_1, T_2, T_3 have heights h_1, h_2, h_3, where $h_1 = h_2 \geq h_3$

 Then $Join(T_1, Join(T_2, T_3))$ takes time $O(h_2 - h_3 + 1)$, and produces a tree of height h_1 or $h_1 + 1$
Suppose the distinct heights of the trees to merge are
\[h_1 > h_2 > \cdots > h_k \]

Invariants:

- After merging trees of height \(h_i, \ldots, h_k \), we obtain a tree of height \(h_i \) or \(h_i + 1 \)
- Time to merge this new tree with the original trees of height \(h_{i-1} \): \(O(h_{i-1} - h_i) \)

Total cost of all merge steps is \(O(t) \), where
\[
t \leq (h_1 - h_2) + (h_2 - h_3) + \cdots + (h_{k-1} - h_k)
= h_1 - h_k
\leq h,
\]
where \(h \) is the height of the original tree

Conclusion: total time for Split is \(O(\log n) \)
Augmenting 2-3 trees

Examples

Store # of items in subtree at each internal node

Queries:

• What is the kth smallest item?
• How many items are $\leq x$?
Items may be marked with an attribute, say, “active”/“inactive”

Store a count of active items in subtree at each internal node

Queries:

- What is the kth smallest active item?
- How many active items are ≤ x?
- Attribute flipping ...
- Operation $\text{Flip}(x, y)$ flips all attribute bits of items in the range
- Assume attributes are bits
- Store an XOR-bit at each internal node
 - “effective” value of the attribute is the XOR of all bits on path from root to leaf
- To perform $\text{Flip}(x, y)$:
 - trace paths e, f to x, y
 - flip bits at x, y, and all roots of “internal” subtrees
Example: