Interpretation of Bit Vectors
Mapping signed \leftrightarrow unsigned

- The computer itself has no idea if a given bit pattern at a particular location in memory “signed” or “unsigned”.

- The program interprets some given bit pattern according to the type that value has been assigned.

- Moreover, mappings between unsigned and two’s complement numbers keep the same bit representations but are interpreted differently depending on type, *which may yield a different value in your program.*
Mapping signed ↔ unsigned con’t

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>

T2U: Signed to Unsigned
U2T: Unsigned to Signed

\[\pm 2^w \]
Insights into overflow

- Lets say you have a signed char with the bit pattern…

01111111

- What is its value in two’s complement in decimal? How about unsigned?
Insights into overflow

- Lets say you have a signed char with the bit pattern…

 01111111

- What is its value in two’s complement in decimal? How about unsigned?

 t: 127 u: 127

- Lets say 1 is added to 127. What is the bit pattern for 128?
Insights into overflow

- Let's say you have a signed char with the bit pattern...

 01111111

- What is its value in two’s complement in decimal? How about unsigned?

 t: 127 u: 127

- Let's say 1 is added to 127. What is the bit pattern for 128?

 10000000

- What is this bit pattern’s value in two’s complement in decimal? How about unsigned?
Insights into overflow

- Lets say you have a signed char with the bit pattern…

 01111111

- What is its value in two’s complement in decimal? How about unsigned?

 t: 127 u: 127

- Lets say 1 is added to 127. What is the bit pattern for 128?

 10000000

- What is this bit pattern’s value in two’s complement in decimal? How about unsigned?

 t: -128 u: 128

- See overflow.c
It’s all a matter of interpretation

- The key idea so far here is that a bit pattern is just a bit pattern!!
 - It has no intrinsic value or semantics.

- How that bit pattern is ‘interpreted’ determines its value in your program.

- Ok, so how are bit patterns interpreted in programs?
It’s all a matter of interpretation

- The key idea so far here is that a bit pattern is just a bit pattern!!
 - It has no intrinsic value or semantics.
- How that bit pattern is ‘interpreted’ determines its value in your program.
- Ok, so how are bit patterns interpreted in programs?

Datatypes!
Conversion & Casting with Integers
Signed vs. unsigned in C

- **Constants**
 - By default are considered to be signed integers
 - If you want unsigned you must add a “U” suffix

  ```
  unsigned int x = 0U;
  unsigned int y = 4294967259U;
  ```

- **Casting**
 - *Explicit* casting between signed & unsigned

  ```
  int tx, ty;
  unsigned int ux, uy;
  tx = (int) ux;
  uy = (unsigned) ty;
  ```

 - *Implicit* casting also occurs during assignments and function calls

  ```
  tx = ux;
  uy = ty;
  ```
Casting surprises

- If there is a mix of unsigned and signed in single expression, signed values are *implicitly cast to unsigned*

 - Includes expressions with comparison operators: `<`, `>`, `==`, `<=`, `>=`

 - See *casting_surprise.c*

- There can also be unexpected results when working with array indices

 - See *array_surprise.c* and *array_surprise2.c*
Casting signed \leftrightarrow unsigned: summary

- When the coercion takes place the bit pattern is *maintained*.
 - However the program will *reinterpret* its value!
 - Can have unexpected effects if not careful, as we just observed.
- Again, expressions containing signed and unsigned int…
 - signed integral is coerced to an unsigned integral!!
Signed ‘extension’

- When we do a ‘widening conversion’ of a value via casting, what happens?

- In other words, given \(w \)-bit signed typed integer value \(x \), convert it to \(w+k \)-bit typed integer with same value.
 - \(w \) is the number of bits in the type of \(x \)
 - ex. short = 16
 - \(k \) is the number of bits difference between the two types
 - ex. \(k \) of short vs int = 16

- Moreover, what happens in cases like this?

```plaintext
short x  =  15213;
int   ix  = (int) x;
short y  =  -15213;
int   iy  = (int) y;
```
Signed ‘extension’ con’t

Solution: make k copies of the sign bit

$X = x_{w-1} x_{w-2} \ldots x_1 x_0$

$X' = \underbrace{x_{w-1} \ldots x_{w-1}}_{k \text{ times}} x_{w-2} \ldots x_1 x_0$

- Unsigned: zeros added
- Signed: sign bit extension
- Both yield intuitive and expected result
Signed ‘extension’ con’t

- Therefore, converting from smaller to larger integer data type C automatically performs sign extension

- Therefore, this code...

```c
short x = 15213;
int ix = (int) x;
short y = -15213;
int iy = (int) y;
```

- ...has the values....

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>15213</td>
<td>0000 3B 6D</td>
<td>00000000 00000000 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15213</td>
<td>FF FF C4 93</td>
<td>11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>
Truncation

- When we do a ‘narrowing conversion’ of a value via coercion or casting, what happens? (i.e. from 32-bit int to 16-bit short)

- Higher-order bits are truncated. Value is altered, will be reinterpreted.

- Might yield reasonable result if value is ‘small enough’ to fit in smaller type…

```
int i = 1;
short s = (short) i;
```

- But what about something like this?

```
short s = 256;
char c = (char) s;
```

- This non-intuitive behavior can lead to buggy code!

- See coercion.c
Summary

- **Extension** (e.g. short to int)
 - Unsigned: zeroes added
 - Signed: sign extension
 - Both yield expected results

- **Truncation** (e.g. unsigned short to unsigned int)
 - Unsigned/signed: Higher weighted bits are lopped off
 - Result must be reinterpreted
 - For ‘small numbers’ (e.g. int w/ value 16 into short), ok
 - For ‘large numbers’ (e.g. int w/ value 2^{20} into short), problematic.
Negation & Addition
Negation

- **Task:** given a bit-vector X compute $-X$

- **Solution:** $-X = \sim X + 1$

 - Negating a value is done by computing its complement and adding 1

- **Example:**

 $x = 011001_2 = 25_{10}$

 $\sim x = 100110_2 = -26_{10}$

 $\sim X + 1 = 100111_2 = -25_{10}$

- Notice, therefore, that for any signed integral type x, $\sim x + x = -1$

- See *negation.c*
Addition in base 2

- Very simple, works same as base 10, just remember..
 - $0 + 0 = 0$
 - $0 + 1 = 1$
 - $1 + 0 = 1$
 - $1 + 1 = 10$

- Examples:

 \[
 \begin{array}{c}
 101 \\
 +101 \\
 \hline
 1010 \\
 \end{array}
 \quad
 \begin{array}{c}
 1011 \\
 +1011 \\
 \hline
 10110 \\
 \end{array}
 \]

- Note in the second example that in the 2^1 column, we have $1 + (1 + 1)$, where the first 1 is "carried" from the 2^0 column.
Unsigned addition

Operands: w bits

True Sum: $w+1$ bits

Discard Carry: w bits

- However since types have a limited number of bits, any carry bits after the MSB simply get truncated.

$$\begin{align*}
10010_2 & = 18_{10} \\
+ 11011_2 & = 27_{10} \\
\hline
101101_2 & = 45_{10} \\
01101_2 & = 13_{10}
\end{align*}$$

- See unsigned_addition_overflow.c
Signed addition

Operands: w bits

True Sum: $w+1$ bits

Discard Carry: w bits

- **TAdd** and **UAdd** have identical bit-level behavior. If true sum requires $w+1$ bits, any carry bits after the MSB simply get truncated.

\[
\begin{align*}
10010_2 & = -14_{10} \\
+ 11011_2 & = -5_{10} \\
\hline
101101_2 & = -19_{10} \\
01101_2 & = 13_{10}
\end{align*}
\]
Signed addition con’t

- One important notable difference!
 - If sum ≥ 2^{w-1}, value becomes negative (overflow)
 - If sum < -2^{w-1}, value becomes positive (underflow)

- An now you can explain integer overflow to all your friends!!

- See signed_addition_overflow.c
Multiplication & Division
Multiplication

- **Task**: Computing exact product of w-bit numbers \(x, y \) (either signed or unsigned)

- **Range of Results**:
 - Unsigned multiplication requires *up to* \(2^w \) bits to store result
 \[
 0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1
 \]
 - Two’s complement *min* possible value requires up to \(2^w - 1 \) bits
 \[
 x \times y \geq (-2^{w-1}) \times (2^{w-1} - 1) = -2^{2w-2} + 2^{w-1}
 \]
 - Two’s complement *max* possible value requires up to \(2^w \) bits
 \[
 x \times y \leq (-2^{w-1})^2 = 2^{2w-2}
 \]

- Therefore, maintaining exact results would need to keep expanding size with each product computed.
Multiplication con’t

Operands: \(w \) bits

True product: \(2^w \) bits

Discard \(w \) bits: \(w \) bits

- Similar to overflow in addition as standard multiplication function drops higher order bits
- Yields same non-intuitive results as overflow in addition.
Multiplication \textit{con't}

- Maintaining exact results would require…
 - Keep expanding memory footprint with each product computed
 - This is expensive!
- Therefore, must be done in software
 - e.g., by “arbitrary precision” arithmetic packages
 - ex. Java’s BigDecimal
Power-of-2 multiply with shifting

- Multiplication by a power of two is equivalent to the left shift operation.
 \[u \ll k = u \times 2^k \]

- Examples
 \[u \ll 3 = u \times 8 \]
 \[(u \ll 5) - (u \ll 3) = u \times 24 \]
 \[(u + (u \ll 1)) \ll 2 = u \times 12 \]

- Most machines shift and add faster than multiply.
Generated multiplication code

- Compiler will convert some multiplication to shift operations during compilation process. Example, for something like this...

```c
int multi_by_12(int x)
{
    return x * 12;
}
```

- The compiler generates something like this...

```c
int multi_by_12(int x)
{
    int t = x + x*2
    return t << 2;
}
```
Unsigned power-of-2 division with shifting

- Unsigned integer division by a power of two is equivalent to right shift

\[-u \gg k = \lfloor \frac{u}{2^k} \rfloor\]

- Uses logical shift.

- With signed integers, when \(u \) is negative the results are rounded incorrectly.

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>15213</td>
<td>3B 6D 00111011 01101101</td>
</tr>
<tr>
<td>(x \gg 1)</td>
<td>7606.5</td>
<td>7606</td>
<td>1D B6 00011101 10110110</td>
</tr>
<tr>
<td>(x \gg 4)</td>
<td>950.8125</td>
<td>950</td>
<td>03 B6 00000011 10110110</td>
</tr>
<tr>
<td>(x \gg 8)</td>
<td>59.4257813</td>
<td>59</td>
<td>00 3B 00000000 00111011</td>
</tr>
</tbody>
</table>
Generated division code

- Again, a C compiler automatically generates shift/add code when dividing by constant.

- Example, for something like this…

```c
unsigned int udiv(unsigned x) {
    return x/8;
}
```

- The compiler generates something like this…

```c
unsigned int udiv(unsigned x) {
    return x >> 3;
}
```
Summary

- **Addition:**
 - Unsigned/signed: Normal addition followed by truncate, same operation on bit level
 - Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
 - Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

- **Multiplication:**
 - Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level