Reference Resolution

CSCI-GA.2590

Ralph Grishman
Reference Resolution: Objective

• Identify all phrases which refer to the same real-word entity
 – first, within a single document
 – later, also across multiple documents
Terminology

referent: real-world object referred to

referring expression [mention]: a phrase referring to that object

Mary was hungry; she ate a banana.
Terminology

• *coreference*: two expressions referring to the same thing

Mary was hungry; she ate a banana.

antecedent anaphor
(prior expression) (following expression)

• So we also refer to process as *anaphora resolution*
Types of referring expressions

- definite pronouns (he, she, it, ...)
- indefinite pronouns (one)
- definite NPs (the car)
- indefinite NPs (a car)
- names
Referring Expressions: pronouns

Definite pronouns: he, she, it, ...

• generally anaphoric
 – Mary was hungry; she ate a banana

• pleonastic (non-referring) pronouns
 – It is raining.
 – It is unlikely that he will come.

• pronouns can represent bound variables in quantified contexts:
 – Every lion finished its meal.
Referring Expressions: pronouns

Indefinite pronouns (one)

• refers to another entity with the same properties as the antecedent
 – Mary bought an IPhone6.
 – Fred bought one too.
 – *Fred bought it too.

• can be modified
 – Mary bought a new red convertible.
 – Fred bought a used one.
 = a used red convertible
 (retain modifiers on antecedent which are compatible with those on anaphor)
Referring Expressions: pronouns

Reflexive pronouns (himself, herself, itself)
• used if antecedent is in same clause
 – I saw myself in the mirror.
Referring expressions: NPs

NPs with definite determiners ("the")
• reference to uniquely identifiable entity
• generally anaphoric
 – I bought a Ford Fiesta. The car is terrific.
• but may refer to a uniquely identifiable common noun
 – I looked at the moon
 – The president announced ...
• or a functional result
 – The sum of 4 and 5 is 9.
 – The price of gold rose by $4.
Referring expressions: NPs

NPs with indefinite determiners (“a”)

• generally introduces a new ‘discourse entity’
• may also be generic:
 – A giraffe has a long neck.
Referring expressions: names

• subsequent references can use portions of name:
 – Fred Frumble and his wife Mary bought a house. Fred put up a hammock.
Complications

- Cataphora
- Bridging anaphora
- Zero anaphora
- Non-NP anaphora
- Conjunctions and collective reference
Cataphora

• Pronoun referring to a following mention:
 – When she entered the room, Mary looked around.
Bridging Anaphora

• Reference to related object
 – Entering the room, Mary looked at the ceiling.
Zero Anaphora

- many languages allow subject omission, and some allow omission of other arguments (e.g., Japanese)
 - these can be treated as zero (implicit) anaphors
 - similar resolution procedures
 - some cases of bridging anaphora can be described in terms of PPs with zero anaphors:
 - "IBM announced the appointment of Fred as president of IBM."
Non-NP Anaphora

- Pronouns can also refer to events or propositions:
 - Fred claimed that no one programs in Lisp. That is ridiculous.
Conjunctions and collective reference

• With a conjoined NP,
 ... Fred and Mary ...
 we can refer to an individual ("he", "she") or
 the conjoined set ("the")

• We can even refer to the collective set if not
 conjoined ...
 “Fred met Mary after work. They went to the
 movies.”
Resolving Pronoun Reference

- Constraints
- Preferences
- Hobbs Search
- Selectional preferences
- Combining factors
Pronouns: constraints

Pronoun must agree with antecedent in:

• animacy
 – Mary lost her husband and her notebook. It was last seen in WalMart.

• gender
 – Mary met Mr. and Mrs. Jones. She was wearing orange pants.
 – needs first-name dictionary
 – some nouns gender-specific: sister, ballerina

• number
 – some syntactically singular nouns can be referred to by a plural pronoun: “The platoon ... they”
Pronouns: preferences

Prefer antecedents that are

• recent
 – at most 3 sentences back

• salient
 – mentioned several times recently

• subjects

Recency and preference for subjects are often captured by Hobbs search order, a particular order for searching the current and preceding parse trees
Hobbs search order

• traverse parse tree containing anaphor, starting from anaphor

then

• traverse trees for preceding sentences, breadth first, left-to-right
 • incorporates subject precedence

• stop at first NP satisfying constraints
 • relatively simple strategy, competitive performance
Pronouns: selectional preferences

• Prefer antecedent that is more likely to occur in context of pronoun
 – Fred got a book and a coffee machine for his birthday. He read it the next day.
 – can get probabilities from a large (parsed) corpus
Pronouns: combining probabilities

\[
P = P \text{(correct antecedent is at Hobbs distance } d) \times P \text{(pronoun } | \text{ head of antecedent)} \times P \text{(antecedent } | \text{ mention count)} \times P \text{(head of antecedent } | \text{ context of pronoun)}
\]

Ge, Hale, and Charniak 1998

83% success
Making a General Resolver
Resolving names

- Generally straightforward: exact match or subsequence of prior name
 - some exceptions for locations
Resolving common noun phrases

• generally difficult

• typical strategies for resolving “the” + N:
 – look for prior NP with same head N
 – look for prior name including token N
 • “the New York Supreme Court” ... the court

• more ambitious: learn nouns used to refer to particular entities by searching for “name, N” patterns in a large corpus
 – “Lazard Freres, the merchant bank”
Types of models

• mention-pair model
 – train binary classifier: are two mentions coreferential?
 – to apply model:
 • scan mention in text order
 – link each mention to the closest antecedent classified +
 – link each mention to antecedent most confidently labeled +
 • cluster mentions
 – weak model of partially-resolved coreference

• entity-mention model
 – binary classifier: is a mention part of a partially-formed entity?
 – richer model: entity has features from constituent mentions
Anaphora resolution in Jet

• ‘resolve’ operation
• only processes noun groups
• basically an entity-mention model
 – create entity annotations
 – single pass, adding mentions to entities
• display entities in separate window
Using resolver for implicit arguments

Example: extended version of AppointPatterns (see notes)
Diversity of approaches

Two recent systems show range of approaches (see notes):

- Stanford [CL 2013]
 - hand-coded rules
 - 10 passes over complete document, using rules of decreasing certainty
- Berkeley [EMNLP 2013]
 - classifier trained over large corpus with simple feature set
 - single pass
- No system does well on anaphoric NPs
Evaluation

• Coreference key is a set of links dividing the set of mentions into coreference classes
• System response has similar structure
• How to score response?
• MUC scorer
 – based on links ...
 recall error = how many links must be added to system response so that all members of a key set are connected by links
 – Does not give credit for correct singleton sets
Evaluation

• B-cubed metric:
 – Mention-based
 – For each mention m,
 \[r = \text{size of response set containing m} \]
 \[k = \text{size of key set containing m} \]
 \[i = \text{size of intersection of these sets} \]
 \[\text{recall}(m) = \frac{i}{k} \]
 \[\text{precision}(m) = \frac{i}{r} \]
 – Then compute average of recall, average of precision
A Coherent Discourse

• A text is not a random collection of facts
• A text will tell a story, make an argument, ...
• This is reflected in the structure of the text and the connections between sentences
• Most of these connections are implicit, but a text without these connections is incoherent

Fred took an NLP course in the Spring.
He got a great job in June.

Fred took an NLP course in the Spring.
He got a great cat in June.
A Coherent Discourse

• Criteria for coherence depend on type of text
• Most intensively studied for narratives
 – causal connections
 – temporal connections
 – scripts (conventional sequences)
Coherence and coreference

Select anaphora resolution more consistent with coherence.

Jack poisoned Sam. He died within a week. vs.
Jack poisoned Sam. He was arrested within a week.

How to do this in practice?
Collect from a large corpus a set of predicate/role pairs, such as:

- subject of poison -- subject of arrest
- object of poison -- subject of die.

Prefer anaphora resolution consistent with such pairs.
Cross-document Coreference

Quite different from within-document coref:

• within document (single author or editor)
 – a single person will be consistently referred to by the same name
 – the same name will consistently refer to the same person

• across documents
 – the same person may be referred to using different names
 – a single name may refer to multiple people ("Michael Collins")
Limitation

• Assume each document separately resolved internally

• Only link entities which are named in each document
 – general NPs very hard to link
 – “Fred’s wife” may refer to different people at different times
 – details may change over time:
 • “the dozens of people killed in the bombing”
 • “the 55 people killed in the bombing”
Two Tasks

• Entity linking: map each document-level entity to an entry in a standard data base
 – e.g., wikification
 – entities not in data base are left unlinked

• Cross-document coreference
 – cluster all document-level entities

• Tasks have a lot in common
 – often cross-doc coreference begins with entity linking against a large knowledge base or Wikipedia
Features

Features for cross-doc coref:

• Internal (name) features
• External (context) features
 – whole-document features
 – local context features
 – semantic features
• Consistency
Internal (name) features

Finding a match:
• exact match suitable for edited text in languages with standard romanization
• use edit distance for informal text
• use edit distance or pronunciation-based measure for other languages (e.g., Arabic)

Estimating probability of coref for exact match:
 – for people, use name perplexity, based on
 • number of family names with same given name
 • number of given names with same family name
External (Context) Features

Names are more likely to be coreferential if:

- documents are similar (using tf-idf cosine similarity)
- local contexts are similar
- values of extracted attributes match (birthplace, religion, employer, ...)

Conversely, distinct values of some attributes (birthplace, birthdate) are strong indicators of non-coreferentiality
Consistent Wikification

• If multiple names are being resolved in a single document, they should preferably be resolved to related entities
 – if “New York” and “Boston” are mentioned in the same sentence, prefer that
 • both resolve to cities
 • both resolve to baseball teams
 • both resolve to hockey teams
 – in ranking referents, include as a factor the number of links connecting the referents
Consistent Wikification

“the Yankees faced Boston yesterday”

- New York Yankees
- Boston [city]
- Boston Red Sox
- Boston Bruins

Link in Wikipedia
Scaling Up

- Potential scale for cross-doc coref much larger
 - collection may have 10^7 documents with 10-100 entities each: 10^9 document-level entities
 - computing all pairwise similarities infeasible
 - use hierarchical approach to divide set
 - analog of entity-mention representation within a document
 - potentially with multiple levels (‘sub-entities’)
