Mastering the Pipeline
CSCI-GA.2590

Ralph Grishman
The Pipeline

- Extracting information from natural language text is a complex process.
- We have been able to make it manageable by dividing it into many separate stages, each realized by its own (relatively simple) model.

Diagram:
- tokenizer
- name tagger
- POS tagger
- parser
- coref
- IE
Pipeline Problems

The pipeline raises two serious problems:

• error compounding
 • because stages are computed separately

• need to define intermediate representations
 • laborious
 • suboptimal
 • task-specific
Introducing Errors

Each stage introduces some errors because

• model is an oversimplification of linguistic phenomenon
• (hand-prepared) training data may be noisy
• typically 10% error rate per stage
 – error rates range from 3% (POS) to 15% (name tagging)
Compounding Errors

• Errors in output of stage = errors due to faulty input + errors introduced by stage

• Final output error rate > 50%

tokenizer 10% name tagger 20% POS tagger 30% parser 40% coref 50% IE 60%
Helpful Feedback

- We will reduce the error rate by in effect providing feedback from later stages to earlier ones.
 Example: “Roger Park began to work for IBM.”
- NE tagger says “Roger Park” is most likely a *location* but could also be a *person*.
- relation extraction pattern (in IE stage) indicates a preference for “*person* works” over “*location* works”, fixing the error.

<table>
<thead>
<tr>
<th>component</th>
<th>accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>tokenizer</td>
<td>10%</td>
</tr>
<tr>
<td>name tagger</td>
<td>20%</td>
</tr>
<tr>
<td>POS tagger</td>
<td>30%</td>
</tr>
<tr>
<td>parser</td>
<td>40%</td>
</tr>
<tr>
<td>coref</td>
<td>50%</td>
</tr>
<tr>
<td>IE</td>
<td>60%</td>
</tr>
</tbody>
</table>
Joint Inference

• To perform joint inference between stages A and B,
 – we define an objective function combining A and B
 – we search the combined space of A and B
 • where possible B outputs may depend on A output
 • seeking to maximize combined objective
 • much larger search space than with independent components
More Examples

• “Meet me in front of the White House.”
 – “White House” may refer to the building or the organization therein
 • 1-token context used by NE doesn’t help resolve ambiguity
 – relation pattern determines this is a reference to building

• “Ford employs 4000 in Detroit.”
 – event pattern determines that 4000 is of type people
Benefit

• For 2 or 3 stages, reductions of 2 - 3% (absolute) in error rate are reported
 – can only correct errors which change a valid (more likely) input to second stage to an invalid (less likely) input
Cost

• Much larger space to search
 – full search of product space infeasible
 – joint token-by-token scan updating multiple models (NE, relation, event) concurrently
 • use beam search to limit search space
 – follow only top n hypotheses at each token
 OR
 – follow only hypotheses within m% of best hypothesis
 OR
 – build graphical model connecting stages
 – soft constraints linking stages
Deep Learning

• Instead of training separate models for each stage and then coupling them, can we train a unified model to perform the entire analysis starting from a sequence of tokens:

depth learning using multi-layer neural networks
2 minute guide to neural nets

- building block = node (artificial neuron)
- node takes in multiple real-valued inputs, produces one real-valued output
 \[f(x) = K \left(\sum_{i} w_i \cdot x_i \right) \]
- \(w_i \) = weights (to be learned)
- \(K \) = (non-linear) activation function
A Powerful Model

• A multi-level network can represent a wide range of models
 – compared to the linear or log-linear models we have been using until now (e.g., max ent)
Training

• The network is a powerful system with a simple yet efficient training strategy termed backpropagation.
 – we define a cost function (given an input x, the different between the desired and current outputs)
 – we compute the derivative of the cost function w.r.t. each of the weights in the network
 – given an input/output pair, we update each of the weights (gradient descent)
Input Data

• We need to convert the text into a form which can be effectively used by the NN

• Natural form of information is a fixed-length vector of real values
 – these are the *word embeddings* discussed earlier
 – these can be readily extended to include some hand-coded features (e.g., capitalization)
Convolution Layer

- In conventional feature-based systems, we program a set of features
 - each feature is a function of a set of consecutive tokens: \(f(w_{i-1}, w_i, w_{i+1}) \)
 - feature is applied starting at each token in succession
- In NN, we want the network to learn the appropriate features given only the input and final output
 - We do this through a convolution layer – a row of nodes with a common set of weights
 - fully connected layer would have too many parameters
 - Has potential to create features best suited to main task
 - can initialize layers independently and then train jointly
 - “representation learning”
Successes

• improved speech recognition
 • combining acoustic and language models

• integrated NLP pipelines
 • [Collobert et al JMLR 2011]
 • competitive performance with less feature engineering

• better relation extraction
 • with less feature engineering

• better machine translation
 • (next week)
the Future?

• robust systems
• little or no feature engineering

• input: characters
• output: triples linked to KB