Relation Extraction: Rule-based Approaches
CSCI-GA.2590

Ralph Grishman
Information Extraction Evaluations

• CoNLL has sponsored annual evaluations of NLP components for about 15 years
• NIST has organized (annual) US Government evaluations of information extraction for about 25 years
 • covering both components and integrated systems
 • MUC [Message Understanding Conferences] in the 1990’s
 • ACE [Automatic Content Extraction] 2000-2008
 • KBP [Knowledge Base Population] since 2009
ACE Extraction Tasks

Types of information to extract:

• names
• entities [coreferential noun phrases]
• relations
• events
Relations

• A relation is a predication about a pair of entities:
 – Rodrigo works for UNED.
 – Alfonso lives in Tarragona.
 – Otto’s father is Ferdinand.

• Typically they represent information which is permanent or of extended duration.
History of relations

• Relations were introduced in MUC-7 (1997)
 • 3 relations

• Extensively studied in ACE (2000 – 2007)
 • lots of training data

• Effectively included in KBP
 • Wikipedia infobox model
ACE Relations

• Several revisions of relation definitions
 • With goal of having a set of relations which can be more consistently annotated
• 5-7 major types, 19-24 subtypes
• Both entities must be mentioned in the same sentence
 – Do not get a parent-child relation from
 • Ferdinand and Isabella were married in 1481. A son was born in 1485.
 – Or an employee relation for
 • Bank Santander replaced several executives. Alfonso was named an executive vice president.
• Base for extensive research
 – On supervised and semi-supervised methods
2004 Ace Relation Types

<table>
<thead>
<tr>
<th>Relation type</th>
<th>Subtypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical</td>
<td>Located, Near, Part-whole</td>
</tr>
<tr>
<td>Personal-social</td>
<td>Business, Family, Other</td>
</tr>
<tr>
<td>Employment / Membership / Subsidiary</td>
<td>Employ-executive, Employ-staff, Employ-undetermined, Member-of-group, Partner, Subsidiary, Other</td>
</tr>
<tr>
<td>Agent-artifact</td>
<td>User-or-owner, Inventor-or-manufacturer, Other</td>
</tr>
<tr>
<td>Person-org affiliation</td>
<td>Ethnic, Ideology, Other</td>
</tr>
<tr>
<td>GPE affiliation</td>
<td>Citizen-or-resident, Based-in, Other</td>
</tr>
<tr>
<td>Discourse</td>
<td>-</td>
</tr>
</tbody>
</table>
KBP Slots

• Many KBP slots represent relations between entities:
 • Member_of
 • Employee_of
 • Country_of_birth
 • Countries_of_residence
 • Schools_attended
 • Spouse
 • Parents
 • Children ...

• Entities do not need to appear in the same sentence
• More limited training data
 • Encouraged semi-supervised methods
Characteristics of Relations

- Relations appear in a wide range of forms:
 - Embedded constructs (one argument contains the other)
 - within a single noun group
 - John’s wife
 - linked by a preposition
 - the president of Apple
 - Formulaic constructs
 - Tarragona, Spain
 - Walter Cronkite, CBS News, New York
 - Longer-range (‘predicate-linked’) constructs
 - With a predicate disjoint from the arguments
 - Fred lived in New York
 - Fred and Mary got married
Hand-crafted patterns

• Most instances of relations can be identified by the types of the entities and the words between the entities
 • But not all: Fred and Mary got married.

• Word sequence patterns work well enough for short-range relations
 • But problems arise for longer-range patterns ... greater variety, intervening modifiers
Parsing

• progress through corpus-trained parsers
 • probabilistic context-free parsers
 • corpus-trained shift-reduce parsers
 • more accurate, much faster

• how do we take advantage of parsing?
 • arguments of semantic relation generally connected by a limited set of syntactic structures and lexical items
 • need not take into account the wide range of intervening words
Parsing

• “Fred shot Mary.”
• “Fred, 61, shot Mary.”
• “Fred, tired of her endless lectures on parsing, shot Mary.”

• all have the same dependency relations:
 – verb “shot”
 – subject of shot = “Fred”
 – object of shot = “Mary”
Dependency Structures (1)

• label sets for dependency structures from different parsers are similar but not identical
• most widely used set is from Stanford NLP tools
• we will use a variant set from USC/ISI
 • used in Tratz-Hovy dependency parser
Dependency Structures (2)

- root of tree is generally a (tensed) verb
 - auxiliaries and modals appear as vch [verb chain] dependents of tensed verb
 - principal arguments appear as
 - nsubj [noun subject]
 - dobj [direct object]
 - iobj [indirect object]
 - sentential complements appear as
 - ccomp
 - xcomp
Dependency Structures (3)

• noun modifiers
 – poss [possessive]
 – amod [adjective modifiers]
 – nn [compound noun]

• prepositional phrases: prep and pobj

• conj [conjunction]
Lexicalized Dependency Paths

• path in dependency tree between two entity mentions

• combines dependency types and lexical items
 • type = edge from governor to dependent
 • type-1 = edge from dependent to governor

PERSON – nsubj-1:shoot:dobj -- PERSON
Transformations (1)

• Using dependency paths (rather than linear patterns) greatly increases coverage

• Can further (modestly) increase coverage through transformations that connect closely related structures
 – operate to simplify dependency parse
 – reduce sentences to *kernel sentences* + *transformations*
Transformations (2)

• passive:
 – The cake was baked by Harry. → Harry baked the cake.

• relative
 – Harry, who baked the cake → Harry baked the cake

• reduced relative
 – the cake baked by Harry → the cake, which was baked by Harry
Transformations (3)

• subject control:
 – Harry planned to bake the cake → Harry planned
 (Harry baked the cake)