Given an unsorted array $A[1 \ldots n]$ which contains all but one of the integers in the range $0 \ldots n$, we want to determine the missing integer. Consider the following algorithm:

$$\text{Missing}(A, n)$$
allocate new arrays B, C of size $n + 1$
pick random x from $0, \ldots, n$ //assume this step takes time 1
$n_{\text{less}} = 0, n_{\text{gr}} = 0$
For $i = 1$ to n
 If $A(i) < x$
 $n_{\text{less}} +$
 $B[n_{\text{less}}] = A[i]$
 Else If $A[i] > x$
 $n_{\text{gr}} +$
 $C[n_{\text{gr}}] = A[i] - x - 1$
 If $n_{\text{less}} + n_{\text{gr}} = n$
 Return x
 Else If $n_{\text{less}} < x$
 Return $\text{Missing}(B, n_{\text{less}})$
 Else Return $\text{Missing}(C, n_{\text{gr}}) + x + 1$

(a) (2 pts) Prove the correctness of the algorithm.

(b) (2 pts) Let $T(n)$ be the expected running time. Write the recurrence equation for $T(n)$. (Hint: equation is similar to the one for Randomized Select.)

(c) (2 pts) Solve for $T(n)$. (Hint: use similar techniques)

(d) (2 pts) Design your own best deterministic algorithm for the missing number problem, and asymptotically compare its running time with the answer in part (c).
We say that an array \(A \) is \(c \)-nice, where \(c \) is a constant (think 100), if for all \(1 \leq i, j \leq n \), such that \(j - i \geq c \), we have that \(A[i] \leq A[j] \). For example, 1-nice array is already sorted. In this problem we will sort such \(c \)-nice \(A \) using INSERTION SORT and QUICKSORT, and compare the results.

(a) (4 Points) In asymptotic notation (remember, \(c \) is a constant) what is the worst-case running time of INSERTION SORT on a \(c \)-nice array? Be sure to justify your answer.

Solution: ****************** INSERT YOUR SOLUTION HERE **************

(b) (5 Points) In asymptotic notation (remember, \(c \) is a constant) what is the worst-case running time of QUICKSORT on a \(c \)-nice array? Be sure to justify your answer.

Solution: ****************** INSERT YOUR SOLUTION HERE **************

(c) (1 Points) Which algorithm would you prefer?

Solution: ****************** INSERT YOUR SOLUTION HERE **************
We give the following procedure \textsc{StrangeSort} to sort an array A of n distinct elements.

- Divide A into $n/3$ subsets of size 3 each
- Compute the median of each set to get $n/3$ elements
- Sort these $n/3$ elements recursively using \textsc{StrangeSort} and get p as the median of these $n/3$ elements
- Use p as a pivot in the \textsc{Partition} procedure of \textsc{QuickSort}, i.e., divide A into sets with elements less than p (call $A_{<p}$), those with elements equal to p, and those with elements greater than p (call $A_{>p}$)
- Recursively call \textsc{StrangeSort} on $A_{<p}$ and $A_{>p}$.

(a) (4 points) Give a lower bound on the number of elements in $A_{<p}$ and $A_{>p}$.

\textbf{Solution:} ***************** INSERT YOUR SOLUTION HERE ***************** □

(b) (2 points) What is the recurrence relation you obtain for the time complexity $T(n)$ of \textsc{StrangeSort} assuming that the position of p corresponds to the lower bound found in part (a)?\(^1\)

\textbf{Solution:} ***************** INSERT YOUR SOLUTION HERE ***************** □

(c) (4 points) Try to use induction to show that $T(n) \leq n^{1+c}$ for some (yet undetermined) value of $c > 0$. For simplicity, you may ignore the term corresponding to the (non-recursive) divide-and-conquer step\(^2\) in your recurrence relation, when you do your inductive step. (In other words, only keep all the “T-terms” and drop the “$f(n)$”-terms when you prove your inductive step.) What is the inequality that c should satisfy in order for the induction to work?

\textbf{Solution:} ***************** INSERT YOUR SOLUTION HERE ***************** □

(d) (2 points) Use \url{http://www.wolframalpha.com} to find the smallest possible c (upto two decimal places) for which the “nasty” inequality in part (c) is satisfied. How does the resulting running time of \textsc{StrangeSort} compare to the worst and average-case running times of \textsc{QuickSort}?

\(^1\)It is easy to see that this is the worst case, but you do not have to show this.
\(^2\)I.e., the $n/3$ median findings on 3 elements and the run of the \textsc{Partition} procedure around p.

**** INSERT YOUR NAME HERE ****, Homework 5, Problem 3, Page 1
(e) (4 points) How does your answer from part (d) change if you replace sets of size 3 by sets of size 5 in the STRANGESORT algorithm.

Solution: ****************** INSERT YOUR SOLUTION HERE ******************
Consider the problem of merging \(k \) sorted arrays \(A_1, \ldots, A_k \) of size \(n/k \) each, where \(k \geq 2 \).

(a) (8 points) Using a min-heap in a clever way, give an \(O(n \log k) \)-time algorithm to solve this problem. Write the pseudocode of your algorithm using procedures \textsc{Build-Heap}, \textsc{Extract-Min} and \textsc{Insert}.

Solution: **************** INSERT YOUR SOLUTION HERE ****************

(b) (8 points) Let the number of arrays be \(k = 2 \). Assume all \(n \) numbers are distinct. Using the decision tree method and the fact (which you can assume without proof) that \(\binom{n}{n/2} \approx \frac{2^n}{\sqrt{n \pi}} \), show that the number of comparisons for any comparison-based 2-way merging is at least \(n - O(\log n) \).

(Hint: Start with proving that the number of possible leaves of the tree is equal to the number of ways to partition an \(n \) element array into 2 sorted lists of size \(n/2 \), and then compute the latter number.)

Solution: **************** INSERT YOUR SOLUTION HERE ****************

(c) (2 pts) Show that any correct comparison-based 2-way merging algorithm must compare any two consecutive elements \(a_1 \) and \(a_2 \) in merged array \(B \), where \(a_1 \in A_1 \) and \(a_2 \in A_2 \). Use this fact to construct an instance of 2-way merging which requires at least \(n - 1 \) comparisons, improving your bound of part (b).

Solution: **************** INSERT YOUR SOLUTION HERE ****************

(d∗) (6 pts) Extra Credit: Show that for general \(k \), any comparison-based \(k \)-way merging must take \(\Omega(n \log k) \) comparisons, showing that your solution to part (a) is asymptotically optimal.

(Hint: You can either try to extend part (b) (easier) or part (c) from \(k = 2 \) to general \(k \). Beware that calculations might get messy...)

Solution: **************** INSERT YOUR SOLUTION HERE ****************