Problem 4-1 (Trominoes)

An n-tromino is a $2^n \times 2^n$ “chessboard of unit squares with one corner removed” (figure below drawn for $n = 3$). Assume that initially you are given a 1-tromino (i.e., a simple L-shaped tile of area 3 drawn on the right), but you have a friendly genie whom you can ask to perform the following two operations in any order:

- **Duplicate**: This operation takes an object as input, and creates a second identical copy of this object.
- **Glue**: This operation takes two objects as input, and glues them together (along the sides, without any overlaps) in a manner specified by you.

(a) (6 points) Design a recursive algorithm $\text{TROMINO}(n)$ that creates an n-tromino from 1-tromino using the minimum number of calls to the genie. You only need to specify the top level of the recursion, without the need to explicitly “unwind” the recursion all the way to $n = 1$.

(Hint: First step is to Duplicate the original 1-tromino, as otherwise you “lose” it in the recursive call(s), and you might need it in the “conquer” step.)

(b) (4 points) Give a recurrence relation for the number of calls $T(n)$ to the genie, and solve it.

Problem 4-2 (Coins)

Let n be such that $2^{k-1} < n \leq 2^k$. Assume you want to sample a random number r from 1 to n.

Consider the following algorithm: sample k random bits, a_1, \ldots, a_k. Let $m \in \{0, \ldots, 2^k - 1\}$ be the integer $a_1 \ldots a_k$. If $m < n$, output $m + 1$, else repeat.

(a) (3 pts) Prove that the algorithm is correct; namely, it outputs a random integer r from 1 to n.

(b) (4 pts) Let $Z(n)$ be the expected number of random bits used by the algorithm. Write a recurrence equation for $Z(n)$ and show $Z(n) \leq 2k$.

(c) (4 pts) Now, imagine you want to sample a random permutation of the numbers 1 \ldots n. Start with an array A, $A[i] = i$ for all i. Consider the following algorithm:
Permutation(\(A, n\))

for \(i = n\) downto 1
pick random \(j\) from 1 to \(i\)
swap \(A[i]\) and \(A[j]\)

Show this gives a random permutation of the integers 1\ldots n.

(d) (3 pts) Analyze the expected number of coins used in part (c) as a function of \(n\) (in \(\Theta\) notation). You are allowed to use the result in part (b).

Problem 4-3 (Probabilistic code) 7 pts

Consider the following pseudocode:

Bogus\((n)\)

pick random \(x\) in \(\{1, \ldots, n\}\)
if \(x == n\) output 1
else output Bogus\((x)\)

(a) (4 pts) Write the recurrence equation for the expected running time \(T(n)\) of the algorithm.

(b) (3 pts) Solve for \(T(n)\).