Problem 3-1 (Rotation-Sorted Arrays) 12 points

An array \(A[0 \ldots (n-1)] \) is called rotation-sorted if there exists some cyclic shift \(0 \leq c < n \) such that \(A[i] = B[(i + c) \mod n] \) for all \(0 \leq i < n \), where \(B[0 \ldots (n-1)] \) is the sorted version of \(A \).\(^1\) For example, \(A = (2, 3, 4, 7, 1) \) is rotation-sorted, since the sorted array \(B = (1, 2, 3, 4, 7) \) is the cyclic shift of \(A \) with \(c = 1 \) (e.g. \(1 = A[4] = B[(4 + 1) \mod 5] = B[0] = 1 \)). For simplicity, below let us assume that \(n \) is a power of two (so that we can ignore floors and ceilings), and that all elements of \(A \) are distinct.

(a) (4 points) Prove that if \(A \) is rotation-sorted, then one of \(A[0 \ldots (n/2-1)] \) and \(A[n/2 \ldots (n-1)] \) is fully sorted (and, hence, also rotation-sorted with \(c = 0 \)), while the other is at least rotation-sorted. What determines which one of the two halves is sorted? Under what condition both halves of \(A \) are sorted?

(b) (8 points) Assume again that \(A \) is rotation-sorted, but you are not given the cyclic shift \(c \). Design a divide-and-conquer algorithm to compute the minimum of \(A \) (i.e., \(B[0] \)). Carefully prove the correctness of your algorithm, write the recurrence equation for its running time, and solve it. Is it better than the trivial \(O(n) \) algorithm? (Hint: Be careful with \(c = 0 \) an \(c = n/2 \); you might need to handle them separately.)

Problem 3-2 (Identity Element in an Array) 10 Points

Let \(A \) be an array with \(n \) distinct integer elements in sorted order. Consider the following algorithm \textsc{IdFind}(\(A, j, k \)) that finds an \(i \in \{j \ldots k\} \) such that \(A[i] = i \), or returns \textsc{FALSE} if no such element \(i \) exists.

1 \textsc{IdFind}(\(A, j, k \))
2 \quad \textbf{If} \(j > k \) \textbf{Return} \textsc{FALSE}
3 \quad \textbf{Set} \(i := \ldots \)
4 \quad \textbf{If} \(A[i] = \ldots \) \textbf{Return} \ldots
5 \quad \textbf{If} \(A[i] < \ldots \) \textbf{Return} \textsc{IdFind}(\(A, \ldots, \ldots \))
6 \quad \textbf{Return} \textsc{IdFind}(\(A, \ldots, \ldots \))

(a) (3 points) Fill in the blanks (denoted \ldots) to complete the above algorithm.

\(^1\)Intuitively, \(A \) is either completely sorted (if \(c = 0 \)), or (if \(c > 0 \)) \(A \) starts in sorted order, but then “falls off the cliff” when going from \(A[n - c - 1] = B[n - 1] = \max \) to \(A[n - c] = B[0] = \min \), and then again goes in increasing order while never reaching \(A[0] \).
(b) (5 points) Prove correctness and analyze the running time of the algorithm.
(Notice the emphasis on Prove, you can’t just say “my algorithm works because it works”.)

(c) (2 points) Does the algorithm work if the elements of A are not distinct? Why or why not?

Problem 3-3 (Min-Max using Divide and Conquer) 5 Points

Find a divide-and-conquer algorithm that finds the maximum and the minimum of an array of size n using at most 3n/2 comparisons.
(Hint: First, notice that we are not asking for some iterative algorithm (which is not hard). We are asking for you to explicitly use recursion. In fact, your divide/conquer step should take time $O(1)$. Also, you have to be super-precise about constants and the initial case $n = 2$ to get the correct answer.)

Problem 3-4 (Integer multiplication) 5 Points

Let n be a multiple of m. Design an algorithm that can multiply an n-bit integer with an m-bit integer in time $O(nm\log_2 3 - 1)$.