Lecture 1: Bits, Data, and Operations

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com
Who Am I?

• Mohamed Zahran (aka Z)
• Computer architecture/OS/Compilers Interaction
• http://www.mzahran.com
• Office hours: Tue 2:00-4:00 pm
• Room: WWH 320
Main Goals of This Course

• What happens under the hood in computer systems
• How are software and hardware related
• From algorithms to circuits

You will be able to write programs in C and understand what’s going on underneath.
My wishlist for this Course

• To get more than an A
• To build strong background in computer science
• To use what you have learned in MANY different contexts
• To enjoy the course!
The Course Web Page

• Lecture slides
• Info about mailing list, labs, ...
• Useful links (manuals, tools, ...)
Grading

- Homework: 30%
- Project: 15%
- Midterm Exam: 20%
- Final Exam: 35%
So...What is a computer?

“The Computer is only a fast idiot, it has no imagination; it cannot originate action. It is, and will remain, only a tool to human beings.”

American Library Association’s reaction to UNIVAC computer Exhibit at the 1964 New York World’s fair.

A computer is a symbol-processing machine

Computer: electronic genius?
• NO! Electronic idiot!
• Does exactly what we tell it to, nothing more.
It all starts with a “problem”
Automating Algorithm Execution

- **Algorithm development**
 - A detailed know-how
 - Granularity depends on the machine
 - Done with human brain power

- **Algorithm execution**
 - Sequencing
 - Execution
Two Side Effects

• Algorithm must handle different set of inputs
• Algorithm must be presented to the machine in a *formal* way
Hardware and Software

- Applications software
- Systems software
- Hardware
From Theory to Practice

- In theory, computer can compute anything that’s possible to compute
 - given enough memory and time

- In practice, solving problems involves computing under constraints.
 - time
 - weather forecast, next frame of animation, ...
 - cost
 - cell phone, automotive engine controller, ...
 - power
 - cell phone, handheld video game, ...
Can We Solve Anything With a Computer?

• **Undecidable**
 – Cannot be solved by an algorithm
 – e.g. Halting problem (given a program and inputs for it, decide whether it will run forever or will eventually halt.)

• **Unsolvable**
 – No finite algorithm
 – e.g. Goldbach’s conjecture (Every even number greater than 2 can be written as the sum of two primes.)

• **Intractable**
 – Unreasonable amount of time and resources
Hierarchical View of a Computer System

- A computer system is complicated
- In order to facilitate its study and analysis, it is advisable to divide it into levels
How do we Understand computers?

• Need to understand abstractions such:
 - Algorithms
 - Applications software
 - Systems software
 - Assembly Language
 - Machine Language (ISA)
 - Microarchitecture
 - Logic design
 - Device level
 - Semiconductors/Silicon used to build transistors
 - Properties of atoms, electrons, and quantum dynamics
Two Recurring Themes

• Abstraction
 – Productivity enhancer – don’t need to worry about details…
 You can drive a car without knowing how the internal combustion engine works.
 – …until something goes wrong!
 Where’s the dipstick? What’s a spark plug?
 – Important to understand the components and how they work together.

• Hardware vs. Software
 – It’s not either/or – both are components of a computer system.
 – Even if you specialize in one, you should understand capabilities and limitations of both.
Problem → Algorithm Development → Programmer

High Level Language → Compiler (translator)

Assembly Language → Assembler (translator)

Machine Language → Control Unit (Interpreter)

Microarchitecture → Microsequencer (Interpreter)

Logic Level

Device Level → Semiconductors → Quantum
Problem Definition Level

• Taking a complex real-life problem and formulating it so as to be solved by a computer (abstraction/modeling)
• Requires simplification (which details to remove?)
• Using mathematical model, graph theory, etc.
Algorithm Level

• Precise step-by-step procedure
• Steps must be well defined, to be executed by a machine (no ambiguity)
• Algorithm development is a creative process
• Finite number of steps
• Pseudocode or flowchart
High-Level Language Level

- e.g. C/C++/C#, Java, Fortran, Lisp, etc.
- Used by application programmers and systems programmers
- Can we build machines executing HLL right away?
- Compiler’s job is not only translating...
Assembly Language Level

- More primitive instructions than HLL
- English version of the machine language
 + some more
- User mode and kernel mode
- Can we go from this level to HLL?
ISA
(Instruction Set Architecture) level

• A very important abstraction
 – interface between hardware and low-level software
 – advantage: different implementations of the same architecture
 – disadvantage: sometimes prevents using new innovations

• Modern instruction set architectures:
 – x86_64, PowerPC, MIPS, SPARC, ARM, and others
Instructions

• Language of the Machine
• Platform-specific
• A limited set of machine language commands "understood" by hardware (e.g. ADD, LOAD, STORE, RET)
• We’ll study MIPS instruction set architecture and x86 instruction set architecture
From HLL to ISA: an Example

High-level language program (in C)

```c
swap(int v[], int k)
    int temp;
    temp = v[k];
    v[k] = v[k+1];
    v[k+1] = temp;
}
```

Compiler

Assembly language program (for MIPS)

```
swap:
    add $2, $4,$2
    lw $15, 0($2)
    lw $16, 4($2)
    sw $16, 0($2)
    sw $15, 4($2)
    jr $31
```

Assembler

Binary machine language program (for MIPS)

```
000000000101000010000000000000000011000
000000000000000000000011000000100001
1000110001100100000000000000000000000
100110011110010000000000000000001000
1011011100100000000000000000000000000
101011001100100000000000000000000000
0000000000000000111100000000000000000
000000000000000000000000000000000000
```
Microarchitecture Level

• Resources and techniques used to implement the ISA
 – Pentium IV implements the x86 ISA
 – Power 8 implements the Power PC ISA
• Register files, ALU, Fetch unit, etc.
• Realize intended cost/performance goals
• Interpretation done by the control unit
Logic-Design Level

• Gates
• Multiplexers, decoders, PLA, etc.
• Synchronous (i.e. clocked) : the most widely used
• Asynchronous
Device Level

• Transistors and wires
• Implement the digital logic gates
• Lower level:
 – Solid state physics
 – Machine looks more analog than digital at that level!
Many Choices at Each Level

Solve a system of equations

- Red-black SOR
- Gaussian elimination
- Jacobi iteration
- Multigrid

Programming Languages:
- FORTRAN
- C
- C++
- Java

Processor Types:
- PowerPC
- Intel x86
- Atmel AVR
- Centrino
- Pentium 4
- Xeon

Adder Types:
- Ripple-carry adder
- Carry-lookahead adder

Technology Types:
- CMOS
- Bipolar
- GaAs

Tradeoffs:
- cost
- performance
- power
(etc.)
Our First Steps...
How do we represent data in a computer?

- How do we represent information using electrical signals?
- At the lowest level, a computer is an electronic machine.
- Easy to recognize two conditions:
 - presence of a voltage - we call this state “1”
 - absence of a voltage - we call this state “0”
A Computer is a Binary Digital Machine

- Basic unit of information is the binary digit, or bit.
- Values with more than two states require multiple bits.
 - A collection of two bits has four possible states: 00, 01, 10, 11
 - A collection of three bits has eight possible states: 000, 001, 010, 011, 100, 101, 110, 111
 - A collection of \(n \) bits has \(2^n \) possible states.
What kinds of data do we need to represent?

- **Numbers** - signed, unsigned, integers, floating point, complex, rational, irrational, ...
- **Text** - characters, strings, ...
- **Images** - pixels, colors, shapes, ...
- **Sound**
- **Logical** - true, false
- **Instructions**
- ...

- **Data type:**
 - *representation* and *operations* within the computer
Unsigned Integers

• Non-positional notation
 – could represent a number (“5”) with a string of ones (“11111”)
 – problems?

• Weighted positional notation
 – like decimal numbers: “329”
 – “3” is worth 300, because of its position, while “9” is only worth 9

\[
329 = 3 \times 10^2 + 2 \times 10^1 + 9 \times 10^0
\]

\[
101 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0
\]

\[
3 \times 100 + 2 \times 10 + 9 \times 1 = 329
\]

\[
1 \times 4 + 0 \times 2 + 1 \times 1 = 5
\]
Unsigned Integers (cont.)

- An n-bit unsigned integer represents 2^n values: from 0 to 2^{n-1}.

<table>
<thead>
<tr>
<th></th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>
Unsigned Binary Arithmetic

- Base-2 addition – just like base-10!
 - add from right to left, propagating carry

\[
\begin{align*}
10010 + 1001 &= 11011 \\
10010 + 1011 &= 11101 \\
10010 + 111 &= 10000
\end{align*}
\]
How About Negative Numbers

<table>
<thead>
<tr>
<th>Sign Magnitude:</th>
<th>One's Complement</th>
<th>Two's Complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>000 = +0</td>
<td>000 = +0</td>
<td>000 = +0</td>
</tr>
<tr>
<td>001 = +1</td>
<td>001 = +1</td>
<td>001 = +1</td>
</tr>
<tr>
<td>010 = +2</td>
<td>010 = +2</td>
<td>010 = +2</td>
</tr>
<tr>
<td>011 = +3</td>
<td>011 = +3</td>
<td>011 = +3</td>
</tr>
<tr>
<td>100 = -0</td>
<td>100 = -3</td>
<td>100 = -4</td>
</tr>
<tr>
<td>101 = -1</td>
<td>101 = -2</td>
<td>101 = -3</td>
</tr>
<tr>
<td>110 = -2</td>
<td>110 = -1</td>
<td>110 = -2</td>
</tr>
<tr>
<td>111 = -3</td>
<td>111 = -0</td>
<td>111 = -1</td>
</tr>
</tbody>
</table>

- Issues: balance, number of zeros, ease of operations
- Which one is best? Why?
Signed Integers

- With n bits, we have 2^n distinct values.
 - assign about half to positive integers and about half to negative

- Positive integers
 - just like unsigned – zero in most significant (MS) bit
 00101 = 5

- Negative integers
 - sign-magnitude – set MS bit to show negative, other bits are the same as unsigned
 10101 = -5
 - one’s complement – flip every bit to represent negative
 11010 = -5
 - in either case, MS bit indicates sign: 0=positive, 1=negative
Two's Complement

• Problems with sign-magnitude and 1’s complement
 – two representations of zero (+0 and -0)
 – arithmetic circuits are complex
 • How to add two sign-magnitude numbers?
 – e.g., try 2 + (-3)
 • How to add to one’s complement numbers?
 – e.g., try 4 + (-3)

• Two’s complement representation developed to make circuits easy for arithmetic.
 – for each positive number (X), assign value to its negative (-X),
 such that X + (-X) = 0 with “normal” addition, ignoring carry out

\[
\begin{array}{c}
00101 \quad (5) & 01001 \quad (9) \\
+ 11011 \quad (-5) & + 10111 \quad (-9) \\
\hline
00000 \quad (0) & 00000 \quad (0)
\end{array}
\]
Two’s Complement Signed Integers

- MS bit is sign bit.
- Range of an n-bit number: \(-2^{n-1}\) through \(2^{n-1} - 1\).
 - The most negative number \((-2^{n-1})\) has no positive counterpart.

<table>
<thead>
<tr>
<th>2^3</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
<th>value</th>
<th>2^3</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-7</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>
Converting Binary (2’s C) to Decimal

1. If leading bit is one, take two’s complement to get a positive number.

2. Add powers of 2 that have “1” in the corresponding bit positions.

3. If original number was negative, add a minus sign.

<table>
<thead>
<tr>
<th>n</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
</tr>
</tbody>
</table>
Examples

\[X = 00100111_{\text{two}} \]
\[= 2^5 + 2^2 + 2^1 + 2^0 = 32 + 4 + 2 + 1 \]
\[= 39_{\text{ten}} \]

<table>
<thead>
<tr>
<th>(n)</th>
<th>(2^n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
</tr>
</tbody>
</table>

\[X = 11100110_{\text{two}} \]
\[-X = 00011010 \]
\[= 2^4 + 2^3 + 2^1 = 16 + 8 + 2 \]
\[= 26_{\text{ten}} \]

\[X = -26_{\text{ten}} \]

Assuming 8-bit 2’s complement numbers.
Converting Decimal to Binary (2’s C)

• First Method: Division

1. Find magnitude of decimal number. (Always positive.)
2. Divide by two - remainder is least significant bit.
3. Keep dividing by two until answer is zero, writing remainders from right to left.
4. Append a zero as the MS bit; if original number was negative, take two’s complement.

\[
X = 104_{\text{ten}}
\]

<table>
<thead>
<tr>
<th>Division</th>
<th>Remainder</th>
<th>Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>104/2</td>
<td>52</td>
<td>0</td>
</tr>
<tr>
<td>52/2</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>26/2</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>13/2</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>6/2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3/2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
X = 01101000_{\text{two}}
\]

<table>
<thead>
<tr>
<th>Division</th>
<th>Remainder</th>
<th>Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

X = 01101000_{two}
Converting Decimal to Binary (2’s C)

• Second Method: Subtract Powers of Two

1. Find magnitude of decimal number.
2. Subtract largest power of two less than or equal to number.
3. Put a one in the corresponding bit position.
4. Keep subtracting until result is zero.
5. Append a zero as MS bit. If original was negative, take two’s complement.

<table>
<thead>
<tr>
<th>n</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
</tr>
</tbody>
</table>

\[X = 104_{\text{ten}} \]

- \[104 - 64 = 40 \] \(\text{bit 6} \)
- \[40 - 32 = 8 \] \(\text{bit 5} \)
- \[8 - 8 = 0 \] \(\text{bit 3} \)

\[X = 01101000_{\text{two}} \]
Operations: Arithmetic and Logical

- We now have a good representation for signed integers, so let's look at some arithmetic operations:
 - Addition
 - Subtraction
 - Sign Extension
- We'll also look at overflow conditions for addition.
- Multiplication, division, etc., can be built from these basic operations.
- Logical operations are also useful:
 - AND
 - OR
 - NOT
Addition

• As we've discussed, 2’s comp. addition is just binary addition.
 – assume all integers have the same number of bits
 – ignore carry out
 – for now, assume that sum fits in n-bit 2’s comp. representation

\[
\begin{array}{c}
01101000 \ (104) \\
+ \ 11110000 \ (-16) \\
\hline
01011000 \ (98)
\end{array}
\quad \begin{array}{c}
11110110 \ (-10) \\
+ \ \ \ \ \ \ \ \ \ \ \\
\hline
01011000 \ (98)
\end{array}
\]
Subtraction

• Negate subtrahend (2nd no.) and add.
 – assume all integers have the same number of bits
 – ignore carry out
 – for now, assume that difference fits in n-bit 2’s comp. representation

\[
\begin{align*}
01101000 \quad (104) & \quad - \quad 11110110 \quad (-10) \\
- \quad 00010000 \quad (16) & \quad - \quad \underline{11110110} \quad (-10) \\
01101000 \quad (104) & \quad + \quad 11110000 \quad (-16) \\
+ \quad 11110000 \quad (-16) & \quad + \quad \underline{11110110} \quad (9) \\
01011000 \quad (88) & \quad + \quad \underline{11110110} \quad (-1)
\end{align*}
\]
Sign Extension

• To add two numbers, we must represent them with the same number of bits.

• If we just pad with zeroes on the left:

<table>
<thead>
<tr>
<th>4-bit</th>
<th>8-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>0000100 (still 4)</td>
</tr>
<tr>
<td>1100</td>
<td>00001100 (12, not -4)</td>
</tr>
</tbody>
</table>

• Instead, replicate the MS bit -- the sign bit:

<table>
<thead>
<tr>
<th>4-bit</th>
<th>8-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>0000100 (still 4)</td>
</tr>
<tr>
<td>1100</td>
<td>11111100 (still -4)</td>
</tr>
</tbody>
</table>
Detecting Overflow

• No overflow when adding a positive and a negative number
• No overflow when signs are the same for subtraction
• Overflow occurs when the value affects the sign:
 - overflow when adding two positives yields a negative
 - or, adding two negatives gives a positive
 - or, subtract a negative from a positive and get a negative
 - or, subtract a positive from a negative and get a positive
Logical Operations

• Operations on logical TRUE or FALSE
 – two states -- takes one bit to represent: TRUE=1, FALSE=0

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A AND B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A OR B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>NOT A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

• View n-bit number as a collection of n logical values
 – operation applied to each bit independently
Examples of Logical Operations

- **AND**
 - useful for clearing bits
 - AND with zero = 0
 - AND with one = no change

- **OR**
 - useful for setting bits
 - OR with zero = no change
 - OR with one = 1

- **NOT**
 - unary operation -- one argument
 - flips every bit

And example:

\[
\begin{align*}
\text{AND} & \quad 11000101 \quad 00001111 \\
\text{OR} & \quad 11000101 \quad 00001111
\end{align*}
\]

\[
\begin{align*}
\text{NOT} & \quad 11000101 \quad 00111010
\end{align*}
\]
Hexadecimal Notation

- It is often convenient to write binary (base-2) numbers as hexadecimal (base-16) numbers instead.
 - fewer digits -- four bits per hex digit
 - less error prone -- easy to corrupt long string of 1’s and 0’s

<table>
<thead>
<tr>
<th>Binary</th>
<th>Hex</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Binary</th>
<th>Hex</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>A</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>B</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>C</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>D</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>E</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>F</td>
<td>15</td>
</tr>
</tbody>
</table>
Converting from Binary to Hexadecimal

- Every four bits is a hex digit.
 - start grouping from right-hand side

\[
\begin{array}{cccccccc}
0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
3 & A & 8 & F & 4 & D & 7 \\
\end{array}
\]

This is not a new machine representation, just a convenient way to write the number.
Fractions: Fixed-Point

• How can we represent fractions?
 – Use a "binary point" to separate positive from negative powers of two -- just like "decimal point."
 – 2’s comp addition and subtraction still work.
 • if binary points are aligned

\[
\begin{align*}
00101000.101 + 11111110.110 &= 00100111.011
\end{align*}
\]

(40.625)
(-1.25)
(39.375)
Floating Point (a brief look)

- We need a way to represent
 - numbers with fractions, e.g., 3.1416
 - very small numbers, e.g., .000000001
 - very large numbers, e.g., 3.15576×10^9

- Representation:
 - sign, exponent, significand: $(-1)^{\text{sign}} \times \text{significand} \times 2^{\text{exponent}}$
 - more bits for significand gives more accuracy
 - more bits for exponent increases range

- IEEE 754 floating point standard:
 - single precision: 8 bit exponent, 23 bit significand
 - double precision: 11 bit exponent, 52 bit significand
IEEE 754 floating-point standard

- Leading “1” bit of significand is implicit (called hidden 1 technique, except when exp = -127)
- Exponent is “biased” to make sorting easier
 - all 0s is smallest exponent
 - all 1s is largest exponent
 - bias of 127 for single precision and 1023 for double precision
- summary: \((-1)^{\text{sign}} \times (1+\text{significand}) \times 2^{\text{exponent} - \text{bias}}\)

- Example:
 - decimal:
 \(-.75 = - (\frac{1}{2} + \frac{1}{4})\)
 - binary:
 \(-.11 = -1.1 \times 2^{-1}\)
 - floating point: exponent = 126 = 01111110
 - IEEE single precision: 10111111010000000000000000000000
More about IEEE floating Point Standard

Single Precision:

\[(-1)^{\text{sign}} \times (1+\text{significand}) \times 2^{\text{exponent} - 127} \]

The variables shown in red are the numbers stored in the machine.

Important! Significant is always 0.XXXX
Floating Point Example

what is the decimal equivalent of

1 01110110 10110000...0
Text: ASCII Characters

- **ASCII**: Maps 128 characters to 7-bit code.
 - both printable and non-printable (ESC, DEL, ...) characters

<table>
<thead>
<tr>
<th>ASCII Code</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>nul</td>
</tr>
<tr>
<td>09</td>
<td>ht</td>
</tr>
<tr>
<td>10</td>
<td>dle</td>
</tr>
<tr>
<td>19</td>
<td>em</td>
</tr>
<tr>
<td>22</td>
<td>"</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>9</td>
</tr>
<tr>
<td>47</td>
<td>G</td>
</tr>
<tr>
<td>55</td>
<td>U</td>
</tr>
<tr>
<td>63</td>
<td>c</td>
</tr>
<tr>
<td>71</td>
<td>k</td>
</tr>
<tr>
<td>79</td>
<td>s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASCII Code</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>87</td>
<td>{</td>
</tr>
</tbody>
</table>

- **Special Characters**:
 - **nul**: Null Character (0x00)
 - **sp**: Space Character (0x20)
 - **@**: At Symbol (0x40)
 - **P**: Punctuation (0x50)
 - **`**: Backtick (0x60)
 - **p**: Lowercase Letter (0x70)
 - **A**: Upper Case Letter (0x41)
 - **Q**: Capital Letter (0x51)
 - **b**: Lowercase Letter (0x62)
 - **B**: Capital Letter (0x42)
 - **R**: Capital Letter (0x52)
 - **c**: Lowercase Letter (0x63)
 - **C**: Capital Letter (0x43)
 - **d**: Lowercase Letter (0x64)
 - **D**: Capital Letter (0x44)
 - **e**: Lowercase Letter (0x65)
 - **E**: Capital Letter (0x45)
 - **f**: Lowercase Letter (0x66)
 - **F**: Capital Letter (0x46)
 - **g**: Lowercase Letter (0x67)
 - **G**: Capital Letter (0x47)
 - **h**: Lowercase Letter (0x68)
 - **h**: Capital Letter (0x48)
 - **i**: Lowercase Letter (0x69)
 - **I**: Capital Letter (0x49)
 - **j**: Lowercase Letter (0x6a)
 - **J**: Capital Letter (0x4a)
 - **k**: Lowercase Letter (0x6b)
 - **K**: Capital Letter (0x4b)
 - **l**: Lowercase Letter (0x6c)
 - **L**: Capital Letter (0x4c)
 - **m**: Lowercase Letter (0x6d)
 - **M**: Capital Letter (0x4d)
 - **n**: Lowercase Letter (0x6e)
 - **N**: Capital Letter (0x4e)
 - **o**: Lowercase Letter (0x6f)
 - **O**: Capital Letter (0x4f)
 - **p**: Lowercase Letter (0x70)
 - **P**: Capital Letter (0x40)
 - **q**: Lowercase Letter (0x71)
 - **Q**: Capital Letter (0x41)
 - **r**: Lowercase Letter (0x72)
 - **R**: Capital Letter (0x52)
 - **s**: Lowercase Letter (0x73)
 - **S**: Capital Letter (0x53)
 - **t**: Lowercase Letter (0x74)
 - **T**: Capital Letter (0x54)
 - **u**: Lowercase Letter (0x75)
 - **U**: Capital Letter (0x55)
 - **v**: Lowercase Letter (0x76)
 - **V**: Capital Letter (0x56)
 - **w**: Lowercase Letter (0x77)
 - **W**: Capital Letter (0x57)
 - **x**: Lowercase Letter (0x78)
 - **X**: Capital Letter (0x58)
 - **y**: Lowercase Letter (0x79)
 - **Y**: Capital Letter (0x59)
 - **z**: Lowercase Letter (0x7a)
 - **Z**: Capital Letter (0x5a)

- **Escape Characters**:
 - **ESC**: Escape Character (0x1B)
 - **DEL**: Delete Character (0x7F)

- **ASCII Representation**:
 - The ASCII table is represented in a tabular format with each character and its corresponding ASCII code.
Interesting Properties of ASCII Code

• What is the relationship between a decimal digit ('0', '1', ...) and its ASCII code?

• What is the difference between an upper-case letter ('A', 'B', ...) and its lower-case equivalent ('a', 'b', ...)?

• Given two ASCII characters, how do we tell which comes first in alphabetical order?
Other Data Types

• Text strings
 – sequence of characters, terminated with NULL (0)

• Image
 – array of pixels
 • monochrome: one bit (1/0 = black/white)
 • color: red, green, blue (RGB) components (e.g., 8 bits each)
 • other properties: transparency
 – hardware support:
 • typically none, in general-purpose processors
 • MMX -- multiple 8-bit operations on 32-bit word

• Sound
 – sequence of fixed-point numbers
Conclusions

• In this lecture we made our first steps toward understanding bits, data, and operations on them.
• Computers understand only binary
• Binary presentation is enough to deal with many different type of data (signed/unsigned numbers, floating points, ASCII, ...)