• Homework 5
 • Due Saturday at 2am (so, basically Friday night)
• Homework 6 won't be posted until next Friday
 • Enjoy your break!
• Problem A: Ferry Loading
 • http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70745#problem/A

• Problem B: Winning Streak
Problem: UVA 104: Arbitrage

Summary: Take advantage of currency fluctuations to make money.

Input: Table of exchange rates

Output: Shortest sequence of currencies to buy that will yield a profit of more than 1%
Dijkstra’s and Bellman-Ford give you single-source shortest path, what if you want to find all-pairs shortest path?

What happens if you want to find the shortest distance between all pairs of nodes?

- On a weighted, connected graph, use Floyd Warshall algorithm
- Implement in ~4 lines of code
- \(O(V^3)\) instead of \(V\) Dijkstra's algorithm, which would be \(O(V^3 \log V)\)
- Dynamic programming
// inside int main()
// precondition: m[i][j] contains the weight of edge (i, j)
// or INF if there is no such edge
// (m is an adjacency matrix)

for (int k = 0; k < V; k++)
 for (int i = 0; i < V; i++)
 for (int j = 0; j < V; j++)
 m[i][j] = min(m[i][j], m[i][k] + m[k][j]);

// common error: remember that loop order is k->i->j
• Intuition: gradually allow the usage of intermediate vertices [1..k]
• E.g., suppose we’re looking for the shortest path from 3 to 4:

![Diagram of a network with vertices 0, 1, 2, 3, 4 and edges between them.]

The current content of Adjacency Matrix D at $k = -1$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>∞</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>4</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>∞</td>
<td>1</td>
<td>0</td>
<td>∞</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>∞</td>
<td>3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>

$\text{sp}(3, 2, -1) = 3$ $\text{sp}(2, 4, -1) = 1$ $\text{sp}(3, 4, -1) = 5$

We will monitor these two values.
• $k=0$ allows us to find shorter paths from $3\rightarrow 0\rightarrow 1$, $3\rightarrow 0\rightarrow 2$, $3\rightarrow 0\rightarrow 4$
• $k=2$ allows us to find shorter paths from $0 \rightarrow 2 \rightarrow 4$, $3 \rightarrow 2 \rightarrow 4$
• Recall that $3 \rightarrow 2 \rightarrow 4$ shortest path is actually $3 \rightarrow 0 \rightarrow 2 \rightarrow 4$

Explanation of Floyd's

The current content of Adjacency Matrix D at $k = 2$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>4</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>∞</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>
Exercise: The diameter of a graph is the longest distance between any pair of vertices. Explain how to find the diameter of a graph.

Exercise: Explain how to find the strongly connected components of a graph in $O(V^3)$ time.
We are going to build a DP single source shortest path algorithm as follows (weighted directed graph with negative edges). The dp array `double[] dists` will store the length of the shortest path from the starting node \(v \) to vertex \(i \) using any walk of length \(k \) or less. The algorithm iterates \(k = 1, 2, \ldots \) updating dists at each step. Answer the following questions:

(a) How should we initialize the array dists?

(b) Explain how to update dists during each iteration.

(c) When can we stop iterating through \(k \)-values?

(d) How can we use the above algorithm to find negative cycles?
We are going to build a DP all pairs shortest path algorithm as follows (weighted directed graph with negative edges). The dp array `double[][] dists` will store the length of the shortest path from vertex `i` to vertex `j` only using vertices numbered less than `k`. The algorithm iterates `k = 1, 2, ...` updating `dists` at each step. Answer the following questions:

(a) How should we initialize the array `dists`?

(b) Explain how to update `dists` during each iteration.

(c) When can we stop iterating through `k`-values?

(d) How can we use the above algorithm to find negative cycles?