• Homework 5 will be posted tomorrow
• Homework 4
 • Due Saturday at 2am (so, basically Friday night)
 • Problem C is a bonus point!
 • BUT: I will randomly select one of the people to present their solution next Thursday for an additional bonus point
 • If chosen, you **cannot opt-out** of presenting (you’ll have to give it your best shot)
• Midterm: Tuesday, March 10, 2015
 • Practice midterm online
 • Will only cover up to and including dynamic programming
 • i.e., this lecture will not be in the midterm
Exercise: In an undirected graph, suppose you are doing a DFS and have processed one child c_1 of the root. After the child has finished, there is another child c_2 still in the INIT state that must be processed. What happens to the graph if we remove the root?
• DFS can also be used to find bridges and articulation points
• **Definition**: a bridge is an edge whose removal increases the number of connected components
• **Definition**: an articulation point is a vertex whose removal increases the number of connected components
• Problems involving finding bridges and articulation points usually defined for undirected, connected graphs
 • Harder for directed graphs
 • E.g., book’s example: sabotaging road networks
 • Recall naïve approach for finding bridges and articulation points
 • Runtime $O(V^2 + VE)$
• Consider the root of a DFS tree
 • After a child is processed, if other unprocessed children exist, then the root is an articulation point
• For non-roots:
 • Each vertex in the DFS tree will be visited in some order, keep track of two numbers:
 • dfs_num: counter for when the vertex is visited for the first time
 • dfs_low: lowest dfs_num reachable from the vertex
 o But ignore immediate parents
 • Initially, dfs_num = dfs_low for all vertices
 • dfs_low can only be made smaller if there are cycles (back edges)
• If a vertex u has neighbor v with $\text{dfs_low}(v) \geq \text{dfs_num}(u)$, then u is an articulation point
 • No back edge from v to ancestors of u
 • In order for v and descendants to reach ancestors of u, traversal must pass through u
• **Exercise**: how do we adapt this algorithm to find bridges?
• Same algorithm can be used to find bridges, except: $\text{dfs_low}(v) > \text{dfs_num}(u)$ implies that (u,v) is a bridge
 • Note that it no longer includes equality
• **Spanning tree**
 • Given: a connected, undirected graph \(G = (V, E) \)
 • \(V \) is the set of vertices, \(E \) is the set of edges
 • A spanning tree is a set of edges that is a tree and “covers” all vertices \(V \)
 • There can be several trees
 • The spanning tree with the minimum cost (sum of edge weights) is called the **Minimum Spanning Tree**
Minimum Spanning Tree

Minimum spanning tree
Cost: 4 + 2 + 6 + 6 = 18
• **Kruskal's algorithm for finding the MST**
 - Repeatedly finds edges with minimum costs that does not form a cycle
 - Greedy algorithm, provably correct

• **Kruskal's algorithm pseudocode**
 - Sort edges by increasing weight
 - While there are unprocessed edges left
 - Pick an edge e with minimum cost
 - If adding e to the MST does not form a cycle, add e to MST
• Kruskal's algorithm pseudocode
 • How to store and sort edges?
 • Using an edge list and Collections.sort
 • How to test for cycles?
 • using disjoint sets and union-find (**Exercise**: how?)
 • Runtime?
 • Sort: $O(|E| \log |E|)$
 • Processing: for each edge, check union-find: $O(|E|) \times O(1)$
 • Total: $O(|E| \log |E|) = O(|E| \log |V|)$

• **Exercise**: If the weights of the edges are integers within a small range (e.g., [0, 100]), can Kruskal’s be made faster?
Kruskal’s Algorithm: Example

Pick smallest edge
Cycle formed, ignore

Pick smallest edge
No cycle

Pick smallest edge
No cycle
Algorithm not done! The edge list hasn't yet been exhausted

Pick smallest edge
Cycle formed, ignore

Pick smallest edge
Cycle formed, ignore
ArrayList<Edge> edgeList = parseEdgeList();
Collections.sort(edgeList);

int mstCost = 0;
UnionFind uf = new UnionFind(nVertices);

for (Edge e : edgeList) { // for each edge
 if (!uf.isSameSet(e.A, e.B)) { // if no cycle
 mstCost += e.w; // add it
 uf.union(e.A, e.B);
 }
}

System.out.println(mstCost);
Quick summary of Prim’s algorithm:
1. Begin with a set of vertices \(V \), initialized with an arbitrary vertex, and empty set of edges \(E \)
2. From all edges, add edge \((u, v)\) with least weight such that \(u \) is in \(V \) and \(v \) is not
 • We’re building a tree, and continuously adding vertices to the tree
3. Repeat step 2 until all vertices have been added to the tree

Greedy algorithm
- Also \(O(|E| \log |V|) \) running time
- More detail in textbook
Exercise: Given a connected weighted graph length that stores the road length between E pairs of cities \(i\) and \(j\) (\(1 \leq V \leq 1000\), \(0 \leq E \leq 10000\)), the price \(p[i]\) of fuel at each city \(i\), and the fuel tank capacity \(c\) of a car (\(1 \leq c \leq 100\)), determine the cheapest trip cost from starting city \(s\) to ending city \(e\) using a car with fuel capacity \(c\). All cars use one unit of fuel per unit of distance and start with an empty fuel tank.
• For directed, weighted graphs:
 • Without negative weights
• Dijkstra’s algorithm:
 • Recall BFS: instead of enqueuing just neighbors, enqueue (total weight to source, neighbor), with the priority queue sorting by weight
 • Minimum distance from source to other vertices stored in array
 • Array updated as smaller-weight paths are found
 • Initialized with inf
 • \(O((|V| + |E|) \log |V|)\)
Dijkstra’s Algorithm: Example

Question: Shortest paths from 2 to all other nodes?

Priority Queue (distance, node index)
{(0, 2)}

Distance table

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>d[i]</td>
<td>INF</td>
<td>INF</td>
<td>0</td>
<td>INF</td>
<td>INF</td>
</tr>
</tbody>
</table>

Start from node 2
Dijkstra’s Algorithm: Example

Question: Shortest paths from 2 to all other nodes?

Priority Queue (distance, node index)
{(0, 2)}
{(2, 1), (6, 0), (7, 3)}

Distance table

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>d[i]</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>7</td>
<td>INF</td>
</tr>
</tbody>
</table>

Add all unvisited nodes from node 2 to the priority queue.
The PQ sorts the distances so the “next closest” node floats to the top.
Right now the closest node is 1, followed by 0, then 3.
Question: Shortest paths from 2 to all other nodes?

Priority Queue (distance, node index)
{(0, 2)}
{(2, 1), (6, 0), (7, 3)}
{(5, 3), (6, 0), (7, 3), (8, 4)}

Poll from the PQ to get node 1.
Add all neighboring nodes to node 1 that haven't been polled yet.
BUT be sure to add all nodes that may already be in the queue with longer distances – there may be a shorter way to reach them.
Dijkstra's Algorithm: Example

Question: Shortest paths from 2 to all other nodes?

Priority Queue (distance, node index)

\{ (0, 2) \}
\{ (2, 1), (6, 0), (7, 3) \}
\{ (5, 3), (6, 0), (7, 3), (8, 4) \}
\{ (6, 0), (7, 3), (8, 4) \}

Poll from the PQ to get node 3.
Since we know there is a faster way to get node 4, don't bother adding node 4 to PQ
Dijkstra’s Algorithm: Example

Question: Shortest paths from 2 to all other nodes?

Priority Queue (distance, node index)
{ (0, 2) }
{ (2, 1), (6, 0), (7, 3) }
{ (5, 3), (6, 0), (7, 3), (8, 4) }
{ (6, 0), (7, 3), (8, 4) }
{ (7, 3), (7, 4), (8, 4) }

Distance table

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>d[i]</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

Poll from the PQ to get node 0.
Since we know there is a faster way to get node 4, don't bother adding node 4 to PQ
Question: Shortest paths from 2 to all other nodes?

Priority Queue (distance, node index)
{(0, 2)}
{(2, 1), (6, 0), (7, 3)}
{(5, 3), (6, 0), (7, 3), (8, 4)}
{(6, 0), (7, 3), (8, 4)}
{(7, 3), (7, 4), (8, 4)}
{(7, 4), (8, 4)}

Now the (7, 3) state is ignored because it's been determined that 7 is a longer path than another existing path to node 3
Dijkstra’s Algorithm: Example

Question: Shortest paths from 2 to all other nodes?

Priority Queue (distance, node index)

\{(0, 2)\}
\{(2, 1), (6, 0), (7, 3)\}
\{(5, 3), (6, 0), (7, 3), (8, 4)\}
\{(6, 0), (7, 3), (8, 4)\}
\{(7, 3), (7, 4), (8, 4)\}
\{(7, 4), (8, 4)\}
\{(8, 4)\}

Distance table

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>d[i]</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

Nowhere to go, so nothing is added to the PQ
Dijkstra's Algorithm: Example

Question: Shortest paths from 2 to all other nodes?

Priority Queue (distance, node index)
{(0, 2)}
{(2, 1), (6, 0), (7, 3)}
{(5, 3), (6, 0), (7, 3), (8, 4)}
{(6, 0), (7, 3), (8, 4)}
{(7, 3), (7, 4), (8, 4)}
{(7, 4), (8, 4)}
{(8, 4)}

Distance table

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>d[i]</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

State (8, 4) is ignored because 8 > 7
Exercise: Will Dijkstra’s work for undirected, unweighted graphs?

Exercise: How do you find the single-source longest path?
• Dijsktra’s will not work for negative weights
 • Greedy nature (i.e., the priority queue)
 • Infinite loop if there’s a cycle
• What to do in case of negative weights?
 • Bellman-Ford: relax all E edges V-1 times
 • Arbitrary order
 • If you can continue to relax edges after V-1 times, then a negative cycle exists
 • Running time: \(O(|E| \times |V|)\)
Problem: UVA 104: Arbitrage

Summary: Take advantage of currency fluctuations to make money.

Input: Table of exchange rates

Output: Shortest sequence of currencies to buy that will yield a profit of more than 1%
Competitive Programming 4.1-4.4