CSCI-UA.0480-003
Parallel Computing

Lecture 20: CUDA II

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com
Software <-> Hardware

- From a programmer’s perspective:
 - Blocks
 - Kernel
 - Threads
 - Grid

- Hardware Implementation:
 - SMs
 - SPs (per SM)
 - Warps
Some Restrictions First

- All threads in a grid execute the same kernel function
- A grid is organized as a 2D (or 3D if compute capability beyond 2.0) array of blocks \((\text{gridDim.x}, \text{gridDim.y}, \text{gridDim.z})\)
- Each block is organized as 3D array of threads \((\text{blockDim.x}, \text{blockDim.y}, \text{blockDim.z})\)
- Once a kernel is launched, its dimensions cannot change.
- All blocks in a grid have the same dimension
- The total size of a block has an upper bound
- Once assigned to an SM, the block must execute in its entirety by the SM
Compute Capability

• A standard way to expose hardware resources to applications.
• CUDA compute capability starts with 1.0
• API: cudaGetDeviceProperties()
cudaError_t cudaGetDeviceProperties(
 struct cudaDeviceProp * prop,
 int device)

cudaError_t
cudaGetDeviceCount(
 int * count)

struct cudaDeviceProp {
 char name[256];
 size_t totalGlobalMem; /* in bytes */
 size_t sharedMemPerBlock; /* in bytes */
 int regsPerBlock;
 int warpSize;
 int maxThreadsPerBlock;
 int maxThreadsDim[3];
 int maxGridSize[3];
 int clockRate; /* in KHz */
 size_t totalConstMem;
 int major; int minor;
 int multiProcessorCount;
 int concurrentKernels;
 int unifiedAddressing;
 int memoryClockRate;
 int memoryBusWidth;
 int l2CacheSize;
 int maxThreadsPerMultiProcessor;
 ... and a lot of other stuff}
Figure 3.2. An Example of CUDA Thread Organization.
• Thread ID is unique within a block
• Using block ID and thread ID we can make unique ID for each thread per kernel
Revisiting Matrix Multiplication

```c
// Matrix multiplication kernel - thread specification
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
    // 2D Thread ID
    int tx = threadIdx.x;
    int ty = threadIdx.y;

    // Pvalue stores the Pd element that is computed by the thread
    float Pvalue = 0;

    for (int k = 0; k < Width; ++k)
    {
        float Mdelement = Md[ty * Width + k];
        float Ndelement = Nd[k * Width + tx];
        Pvalue += Mdelement * Ndelement;
    }

    // Write the matrix to device memory each thread writes one element
    Pd[ty * Width + tx] = Pvalue;
}
```

This is what we did before...
What is the main shortcoming??
Revisiting Matrix Multiplication

```c
// Matrix multiplication kernel - thread specification
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
    // 2D Thread ID
    int tx = threadIdx.x;
    int ty = threadIdx.y;

    // Pvalue stores the Pd element that is computed by the thread
    float Pvalue = 0;

    for (int k = 0; k < Width; ++k)
    {
        float Mdelement = Md[ty * Width + k];
        float Ndelement = Nd[k * Width + tx];
        Pvalue += Mdelement * Ndelement;
    }

    // Write the matrix to device memory each thread writes one element
    Pd[ty * Width + tx] = Pvalue;
}
```

Can only handle 16 elements in each dimension!

Reason:
We used 1 block, and a block is limited to 512 threads (1024 in newer GPUs)
Revisiting Matrix Multiplication

- Break-up Pd into tiles
- Each block calculates one tile
 - Each thread calculates one element
 - Block size equals tile size
Revisiting Matrix Multiplication

TILE_WIDTH = 2

Block(0,0) Block(1,0)

\[
\begin{array}{cccc}
P_{0,0} & P_{1,0} & P_{2,0} & P_{3,0} \\
P_{0,1} & P_{1,1} & P_{2,1} & P_{3,1} \\
P_{0,2} & P_{1,2} & P_{2,2} & P_{3,2} \\
P_{0,3} & P_{1,3} & P_{2,3} & P_{3,3} \\
\end{array}
\]
Revisiting Matrix Multiplication

// Setup the execution configuration
 dim3 dimGrid(Width/TILE_WIDTH, Width/TILE_WIDTH);
 dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
 int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
 int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

 float Pvalue = 0;
 // each thread computes one element of the block sub-matrix
 for (int k = 0; k < Width; ++k)
 Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

 Pd[Row*Width+Col] = Pvalue;
}
Synchronization

_syncthreads()

- called by a kernel function
- The thread that makes the call will be held at the calling location until every thread in the block reaches the location
- Beware of if-then-else
- Threads in different blocks cannot synchronize -> CUDA runtime system can execute blocks in any order
Each block can execute in any order relative to other blocks.

The ability to execute **the same application code** on hardware with different **number of execution resources** is called **transparent scalability**.
Thread Assignment

• Threads assigned to execution resources on a block-by-block basis.
• CUDA runtime automatically reduces number of blocks assigned to each SM until resource usage is under limit.
• Runtime system:
 – maintains a list of blocks that need to execute
 – assigns new blocks to SM as they compute previously assigned blocks
• Example of SM resources
 – computational units
 – number of threads that can be simultaneously tracked and scheduled.
 – Registers
GT200 can accommodate 8 blocks/SM and up to 1024 threads can be assigned to an SM.
What are our choices for number of blocks and number of threads/block?

Thread scheduling is an implementation concept.
Warps

• Once a block is assigned to an SM, it is divided into units called warps.
 – Thread IDs within a warp are consecutive and increasing
 – Warp 0 starts with Thread ID 0

• Warp size is implementation specific.
• Warp is unit of thread scheduling in SMs
Warps

• Partitioning is always the same
• DO NOT rely on any ordering between warps
• Each warp is executed in a SIMD fashion (i.e. all threads within a warp must execute the same instruction at any given time).
 – Problem: branch divergence
Branch Divergence in Warps

- occurs when threads inside warps branches to different execution paths.

50% performance loss
Example of underutilization

Computational Resource Utilization

32 warps, 32 threads per warp, round-robin scheduling
Dealing With Branch Divergence

• A common case: avoid divergence when branch condition is a function of thread ID
 – Example with divergence:
 • If (threadIdx.x > 2) { }
 • This creates two different control paths for threads in a block
 – Example without divergence:
 • If (threadIdx.x / WARP_SIZE > 2) { }
 • Also creates two different control paths for threads in a block
 • Branch granularity is a whole multiple of warp size; all threads in any given warp follow the same path

• There is a big body of research for dealing with branch divergence
Latency Tolerance

• When an instruction executed by the threads in a warp must wait for the result of a previously initiated long-latency operation, the warp is not selected for execution -> latency hiding
• Priority mechanism used to schedule ready warps
• Scheduling does not introduce idle time -> zero-overhead thread scheduling
• Scheduling is used for tolerating long-latency operations, such as:
 – pipelined floating-point arithmetic
 – branch instructions
This ability of tolerating long-latency operation is the main reason why GPUs do not dedicate as much chip area to cache memory and branch prediction mechanisms as traditional CPUs.
Exercise: Suppose 4 clock cycles are needed to dispatch the same instruction for all threads in a Warp in G80. If there is one global memory access every 4 instructions, how many warps are needed to fully tolerate 200-cycle memory latency?
Exercise

The GT200 has the following specs (maximum numbers):

- 512 threads/block
- 1024 threads/SM
- 8 blocks/SM
- 32 threads/warp

What is the best configuration for thread blocks to implement matrix multiplications 8x8, 16x16, or 32x32?
Myths About CUDA

- **GPUs have very wide (1000s) SIMD machines**
 - No, a CUDA Warp is only 32 threads
- **Branching is not possible on GPUs**
 - Incorrect.
- **GPUs are power-inefficient**
 - Nope, performance per watt is quite good
- **CUDA is only for C or C++ programmers**
 - Not true, there are third party wrappers for Java, Python, and more
G80, GT200, and Fermi

<table>
<thead>
<tr>
<th>GPU</th>
<th>G80</th>
<th>GT200</th>
<th>GF100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transistors</td>
<td>681 million</td>
<td>1.4 billion</td>
<td>3.0 billion</td>
</tr>
<tr>
<td>CUDA Cores</td>
<td>128</td>
<td>240</td>
<td>512</td>
</tr>
<tr>
<td>Double Precision Floating Point</td>
<td>None</td>
<td>30 FMA ops / clock</td>
<td>256 FMA ops / clock</td>
</tr>
<tr>
<td>Single Precision Floating Point</td>
<td>128 MAD ops / clock</td>
<td>240 MAD ops / clock</td>
<td>512 FMA ops / clock</td>
</tr>
<tr>
<td>Special Function Units / SM</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Warp schedulers (per SM)</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Shared Memory (per SM)</td>
<td>16 KB</td>
<td>16 KB</td>
<td>Configurable 48 KB or 16 KB</td>
</tr>
<tr>
<td>L1 Cache (per SM)</td>
<td>None</td>
<td>None</td>
<td>Configurable 16 KB or 48 KB</td>
</tr>
<tr>
<td>L2 Cache</td>
<td>None</td>
<td>None</td>
<td>768 KB</td>
</tr>
<tr>
<td>ECC Memory Support</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Concurrent Kernels</td>
<td>No</td>
<td>No</td>
<td>Up to 16</td>
</tr>
<tr>
<td>Load/Store Address Width</td>
<td>32-bit</td>
<td>32-bit</td>
<td>64-bit</td>
</tr>
</tbody>
</table>
Conclusion

• We must be aware of the restrictions imposed by hardware:
 – threads/SM
 – blocks/SM
 – threads/blocks
 – threads/warps

• The only safe way to synchronize threads in different blocks is to terminate the kernel and start a new kernel for the activities after the synchronization point