Exercise 3.1. (Baby floating-point calculations.)

(a) How would you express the fraction (in decimal) 1/8 in the form \(b_1.b_2b_3 \cdots \times 2^p \) in base 2, where each \(b_i \) is a bit and \(b_1 \neq 0 \).

(b) The decimal value 0.1 (one-tenth) can be written as the infinite sum

\[
0.1 = \frac{1}{10} = \frac{1}{16} + \frac{9}{(16)^2} + \frac{9}{(16)^3} + \cdots = \frac{1}{16} + \frac{9}{(16)^2} \sum_{k=2}^{\infty} \frac{1}{(16)^k}.
\]

It follows that there is a repeating normalized infinite representation of 0.1 in base 16 with the form

\[
0.1 = (1.\{h_1h_2h_3\})_{16} \times 16^p,
\]

where each \(h_i \) is a hexadecimal digit. Give the value of \(p \) (in decimal) and the values (in hexadecimal) of \(\{h_i\} \).

(c) Suppose that we wish to use the expression (3.1) of 0.1 from part (b) to produce \(t \), a correctly rounded version of 0.1 that is representable in IEEE double precision. This corresponds to defining \(t \) in the form

\[
t = (1.h_1h_2\ldots h_{13})_{16} \times 16^p.
\]

(Note that the “1” appearing before the hexadecimal point would be the hidden bit.) Please write \(t \) as in (3.2), giving the exponent \(p \) and the value of each \(h_i \) (in hexadecimal), and comment on how you determined the value of \(h_{13} \).

Exercise 3.2. Given a real nonzero number \(x \), by convention the value \(y = x^0 \) (“\(x \) raised to the zero power”) is equal to one. Using IEEE double-precision arithmetic,

(a) Compute \(y = x^0 \) when (a) \(x = 0 \), (b) \(x = \text{Inf} \), and (c) \(x = \text{NaN} \), printing \(x \) and \(y \) in two formats in each case: (i) \texttt{long e} and (ii) hexadecimal. Explain whether the results seem sensible (or not) to you.

(b) Do the same as in (a) for (i) \(1.0 \)\((\text{Inf}) \), (ii) \(-1.0 \)\((\text{Inf}) \), (iii) \(\log(0.0) \), (iv) \(\log(-\text{Inf}) \), and (v) \(\exp(-\text{Inf}) \). Explain whether the results seem sensible (or not) to you.

(c) Devise your own example of a “non-standard” calculation. Determine what happens when it is performed in IEEE double-precision arithmetic, and comment on the results.

Exercise 3.3. Here are the hexadecimal representations of the correctly rounded representable versions, in IEEE double-precision format, of three familiar real numbers. What are those three numbers (in decimal)? Explain how you derived each answer, showing your work, and check your answers by setting \texttt{format hex} and printing the numbers.

c059000000000000
3f847ae147ae147b
400921fb544442d18
Exercise 3.4. The Taylor series expansion of a smooth function \(f \) around the point \(\bar{x} \) is
\[
f(\bar{x} + h) = f(\bar{x}) + hf'(\bar{x}) + \frac{1}{2}h^2 f''(\xi),
\]
where \(\xi \) lies between \(\bar{x} \) and \(\bar{x} + h \). We define the forward-difference approximation \(\phi(\bar{x}, h) \) of the derivative \(f' \) evaluated at \(\bar{x} \) as
\[
\phi(\bar{x}, h) = \frac{f(\bar{x} + h) - f(\bar{x})}{h}.
\]
It follows from the Taylor series that the error in \(\phi(\bar{x}, h) \) satisfies the exact relation
\[
\phi(\bar{x}, h) - f'(\bar{x}) = \frac{1}{2}hf''(\xi) = e_r,
\]
where \(e_r \) is called the truncation error because \(\phi(\bar{x}, h) \) arises from truncating the Taylor series, and \(\xi \) is unknown.

Consider the function \(f(x) = \sin(x) \), where \(x \) is in radians.

(a) Give an upper bound on the truncation error \(|e_r| \) of (3.4) that is valid for all \(\bar{x} \), expressed in terms of the finite-difference interval \(h \). What does this bound suggest about how to choose \(h \) so that the error in a forward-difference approximation to \(f'(\bar{x}) \) is as small as possible?

(b) Give the mathematical form of \(f'(x) \). At \(\bar{x} = 2.25 \), print the numerical values of \(f(\bar{x}) \) and \(f'(\bar{x}) \), computed with IEEE double-precision arithmetic.

(c) For \(k = 4, \ldots, 15 \), define \(h_k = 10^{-k} \). Let \(\tilde{\phi}_k \) denote the computed version of \(\phi(\bar{x}, h_k) \), obtained from the formula (3.3) with \(\bar{x} = 2.25 \) and \(h = h_k \).

(i) For each \(k \), print, using a standard scientific decimal format, \(k, h_k, \tilde{\phi}_k, \) and the difference \(\tilde{\phi}_k - f'(\bar{x}) \).

(ii) Then print in hexadecimal (1) the exact value of \(f(\bar{x}) \), and (also in hexadecimal) for \(k = 4, \ldots, 15 \), the quantities (2) \(h_k \), (3) the computed difference \(f(\bar{x} + h_k) - f(\bar{x}) \), and (4) the computed difference \(\tilde{\phi}_k - f'(\bar{x}) \).

(d) Referring explicitly to the hexadecimal numbers in (c)(ii), explain why the error in \(\tilde{\phi}_k \) does not decrease as \(h_k \) becomes smaller. What source of error, in addition to truncation error, affects the computed values \(\{\tilde{\phi}_k\} \)? Specifically discuss how the phenomenon of cancellation is revealed in the computed results of (c)(ii).

Exercise 3.5.

(a) Let
\[
A = \begin{pmatrix} 0.550 & 0.423 \\ 0.473 & 0.364 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} 0.8757 \\ 0.7533 \end{pmatrix}.
\]
Show that the exact solution \(x^* \) to \(Ax = b \) is \(x^* = (0.9, 0.9)^T \). Give the computed solution \(\tilde{x} \) obtained by executing the Matlab command \(A\backslash b \) (or the equivalent in octave or SciPy). Compute \(d = \tilde{x} - x^*, r^* = b - Ax^*, \) and \(\tilde{r} = b - A\tilde{x} \), and comment on the relative size of their norms.

(b) Let \(\tilde{x} \) be a potential solution of \(Ax = b \), with residual \(\tilde{r} = b - A\tilde{x} \), and define \(E \) as the rank-one matrix
\[
E = \frac{1}{\tilde{x}^T\tilde{x}} \tilde{r}\tilde{x}^T.
\]
Show mathematically that the exact matrix \(E \) satisfies \((A + E)\tilde{x} = b \).

(c) Consider the vector \(\hat{x} \)
\[
\hat{x} = \begin{pmatrix} 40.9 \\ -51.1 \end{pmatrix}.
\]
Would you say that \(\hat{x} \) is close to either \(x^* \) or \(\tilde{x} \)? Explain.
(d) Given the vector \tilde{x} from (c), compute $\tilde{r} = b - A\tilde{x}$, the matrix E in (3.5), and $\|E\|_2$. Is $\|E\|_2$ “small” or “large”?

(e) Compute and print the solution \bar{x} to $(A + E)\bar{x} = b$, obtained using the “\” command.

(f) Based on $\|\bar{x} - \tilde{x}\|$, is \bar{x} “close to” \tilde{x}? Explain why or why not.

(g) Justify the statement: \tilde{x} is close to being the exact solution of a system that is close to the original system.