Solutions to Problem 1 of Homework 11 (8 points)

Name: **** INSERT YOUR NAME HERE **** Due: Wednesday, April 29

(a) (5 points) Design $O(n)$ algorithm to test if a given undirected graph G is acyclic. Notice, the running time of your algorithm should not depend on the number of edges m!

(Hint: Could you argue faster termination of a regular DFS tester on undirected graph?)

Solution: **************** INSERT YOUR SOLUTION HERE ****************

(b) (3 points) Extend the above algorithm to actually print the cycle, in case G is cyclic.

Solution: **************** INSERT YOUR SOLUTION HERE ****************
Your job is to arrange \(n \) rambunctious children in a straight line, facing front, i.e., in the direction of the line. You are given a list of \(m \) statements of the form \(i \) hates \(j \). If \(i \) hates \(j \), then you do not want put \(i \) somewhere behind \(j \), because then \(i \) is capable of throwing a pebble at \(j \).

(a) (4 points) Give an algorithm that orders the line, (or says that it is not possible) in \(O(m + n) \) time.

Solution: **************** INSERT YOUR SOLUTION HERE ************

(b) (6 points) Suppose instead you want to arrange the children in rows, such that if \(i \) hates \(j \) then \(i \) must be in a (strictly) lower numbered row than \(j \). Give an efficient algorithm to find the minimum number of rows needed, if it is possible.

Solution: **************** INSERT YOUR SOLUTION HERE ************
Assume G is an undirected graph with weight function w, and $e_1 \ldots e_m$ are the m edges of G sorted according to their weight: $w(e_1) \leq w(e_2) \leq \ldots \leq w(e_m)$. Imagine you just ran the Kruskal’s algorithm of G and it output an MST T of G. Now assume that somebody changes the weight of a single edge e_i from $w(e_i)$ to some other value w'. For each of the following 4 scenarios, describe the fastest algorithm you can think of to transform the original MST T of G to a new (and correct) MST T' of G after the edge weight change. Make sure you justify your answer, and express your running time as a function of m and n.

(a) (4 points) Assume $e_i \in T$ and $w' < w(e_i)$ (so we decreased an MST edge).

Solution: **************** INSERT YOUR SOLUTION HERE ****************

(b) (4 points) Assume $e_i \not\in T$ and $w' < w(e_i)$ (so we decreased a non-MST edge).

(Hint: Compute the unique shortest path in T between the two end-points of e_i.)

Solution: **************** INSERT YOUR SOLUTION HERE ****************

(c) (4 points) Assume $e_i \not\in T$ and $w' > w(e_i)$ (so we increased a non-MST edge).

Solution: **************** INSERT YOUR SOLUTION HERE ****************

(d) Extra Credit: (6 points) Assume $e_i \in T$ and $w' > w(e_i)$ (so we increased an MST edge).

(Hint: Try to find the smallest weight edge e_j which should replace e_i under the new weight.)

Solution: **************** INSERT YOUR SOLUTION HERE ****************
(a) (5 points) Let \(e \) be the maximum weight edge on some cycle of a connected graph \(G = (V, E) \). Prove that there exists an MST \(T \) of \(G' = (V, E \setminus \{e\}) \) which is also an MST of \(G \). Namely, some MST of \(G \) does not include \(e \).

Solution: **************** INSERT YOUR SOLUTION HERE ****************

(b) (2 points) Consider the following idea for a greedy algorithm for finding some minimal spanning tree in an undirected weighted graph \(G \):

(I) find a cycle in \(G \).
(II) if there is no cycle, output \(G \) and terminate;
(II) else, if there is a cycle,
 * find an edge \(e \) with maximum weight on this cycle;
 * remove \(e \) from the graph \(G \);
 * return to step (I).

Prove correctness of this algorithm using induction and part (a).

Solution: **************** INSERT YOUR SOLUTION HERE ****************

(c) (4 points) Describe details of the fastest implementation you can find for the algorithm in part (b) (or write a pseudocode), and analyze its complexity as a function of \(n \) (number of vertices) and \(m \) (number of edges).

Solution: **************** INSERT YOUR SOLUTION HERE ****************