Problem 6-1 (Number of Predecessors) 8 points

Assume you are given a binary search tree T on n elements. Using a slight modification of the PostOrder-Tree-Walk procedure, argue (by writing the pseudocode!) that in time $\Theta(n)$ you can compute, for every node v, the number of nodes (call it $v.less$) in v’s sub-tree which are less than v.

Hint: In addition to $v.less$, also compute the total number of nodes in v’s subtree.

(a) (5 points) Start with the simpler case when all the elements are distinct.

(b) (3 points) Your solution for part (a) will probably not work if some of the elements of T could be the same. Show how to extend the solution for part (a) to handle this case. (Feel free to right away solve this general case for all 5+3=8 points.)

Problem 6-2 (Reconstructiong Tree) 6 points

The Preorder-Tree-Walk of a binary search tree T is: 6, 2, 1, 4, 3, 5, 7, 9, 8. Draw T.

Problem 6-3 (Commutation of BST?) 10 points

Prove or show a counterexample for the following statements:

(a) (5 points) For any binary search tree T and any element $x \notin T$, if one applies in sequence $\text{INSERT}(x)$ followed by $\text{DELETE}(x)$, then the result will be always T.

(b) (5 points) For any binary search tree T and any element $x \in T$, if one applies in sequence $\text{DELETE}(x)$ followed by $\text{INSERT}(x)$, then the result will be always T.

Problem 6-4 (Non-Commutation of 2-3 Trees) 10 points

Consider the following 2-3 tree T:

```
  9
 / \
5   9
 /  \
1 3 5 7 8 9
```

If the statement is true, you need to give a general argument for any T. If false, you choose a specific T which illustrates the problem.
(a) (5 points) Show an element \(x \notin T \) such that applying in sequence \(\text{INSERT}(x) \) and \(\text{DELETE}(x) \) will result with a tree \(T' \) that is different from \(T \).

(b) (5 points) Show an element \(x \in T \) such that applying in sequence \(\text{DELETE}(x) \) and \(\text{INSERT}(x) \) will result with a tree \(T' \) that is different from \(T \).