Nikolai Joukov, Ph.D.

Enterprise Storage Systems
Content

- Introduction
 - This chart, sign-up

- Enterprise Storage Systems Transformation
 - Real world
 - Storage Optimization Examples

- DevOps

- Reading list
Gain vs. Pain of Transformation

Pain: We want this to be the least!

Gain: We want this to be the most!

Source System Cost for steady state

Target System Cost for steady state

Design & Approach Planning & Implementation Realization

Steady state cost benefit

Migration Cost

Improved HW/SW Utilization

Improved Operational Processes

Power Consumption

Cost

Gain: We want this to be the most!
Abstract Architecture for Enterprise IT Transformation

Customer and infrastructure data collection

Analytics, Design, Planning

Procurement and physical setup

Migrate and modify

Test and remediate

Synchronize and cutover

Non-customer sources

Consolidated data repositories

Migration Analytics

Project workflow and status visualization
Enterprise Storage
Typical Server Example

- Stored on file systems or block devices directly
 - Server OS
 - software installations
 - software configurations
 - application data
 - temporary files
 - logs
Enterprise Storage Components

- Almost any component can interact directly with another component
- e.g., a database can store data on a file system or directly on a disk partition

<table>
<thead>
<tr>
<th>Backup/Management Systems</th>
<th>/dev device aliases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network File Systems</td>
<td>Logical Volume Managers</td>
</tr>
<tr>
<td>Local File Systems</td>
<td>Software RAIDs</td>
</tr>
<tr>
<td></td>
<td>Hardware RAIDs</td>
</tr>
<tr>
<td></td>
<td>Local Disks</td>
</tr>
<tr>
<td></td>
<td>Directly Attached Disks</td>
</tr>
<tr>
<td></td>
<td>Storage Area Networks</td>
</tr>
</tbody>
</table>

Block level unit of data is sector(s)
Local Hard Disks

- Hot-swappable
- Typically used for OS/middleware
- Almost always SCSI
- Some servers have none (diskless)
Embedded or External RAID Arrays

- Redundant Array of Independent Disks (RAID)
- Software
- Hardware
- Internal
- External
- With and without NVRAM

[Diagram of RAID5 array]
Local File Systems

- Disk-based
 - fat-like (ext2, fat32)
 - Journaled (ext3, ntfs, xfs)
 - Chunked (ext4)
 - Log-based (zfs, wafl)
- Integrated with lower block-level
 - zfs, vxfs
- Optimized for special purpose
 - Oracle ASM
- Memory-based
- Interfaces
 - /proc, /dev
- Stackable
 - unionfs
 - cryptfs
Network File Systems

- **Client-Server**
 - NFS
 - v3: stateless
 - v4: stateful
 - CIFS

- **Distributed**
 - Andrew
 - DCE/DFS
 - GPFS

- **Typical uses**
 - user directories
 - data sharing
 - shared software installation code
 - common data repositories such as software installations
Each per-software sensor builds a specific model (e.g., for DB2 or JFS) based on:
- configuration data
- logs
- available monitoring

Models get connected together via “URLs”
Logical Volume Manager Example

File systems (local and network)

Logical devices

LVM

Local hard disks

Databases and other software not shown here

Could be SAN connections
Linux Server DB2-to-Storage Discovery Example

DB2, two instances, databases

DB2 on another server that we did not scan

NFSD on another server that we did not scan

Ext3 mounts

LVM install, volume groups, volumes

SCSI disk, partitions

NFSD on another server that we did not scan

SCSI disk, and partition

unused, not partitioned IDE disk

another SCSI disk and partition
Storage Area Networks

- Block-level networks to transfer data between storage devices to servers
- Dedicated networks
- Almost always each server has two redundant links to the storage controllers
- Each server adapter and each storage controller port has a World Wide Port Name (WWPN)
 - Relinking servers and storage requires updating port mappings
- SANs are zoned for security
- Logical Unit Number (LUN) is the unit of data accessed by the servers
OS/hardware clusters

- E.g., AIX, Linux, Windows OS and Veritas Clusters
- They almost always assume shared storage clusters via Storage Area Networks (SANs)
- They can be integrated with middleware and monitor if, say, a database is servicing requests
- Typically have multiple heartbeat loops including a dedicated shared storage volume
Enterprise Storage Systems

- Fully redundant
- Each hard disk has two data ports
- Each such port is connected to a separate server inside of the storage controller
- Disks are RAIDed and have hot spares
VMware ESX Client VM (left) and Server (center)
Storage Optimization Examples
Enterprise Applications

- You will hear “Application” everywhere and during all lectures of this course
- Application is a high-level view on IT based on the performed business function
- Examples: travel expense reimbursement application, student grading application
- Google search is a large distributed application too
- One application can consist of one or hundreds of servers
- Some servers or even objects like databases are shared by multiple applications
- Applications have owners
- Applications have dramatically different criticality for enterprises
Example Use Case: Business Data Criticality vs. Storage Tier (30 production AIX servers)
Example Use Case: Disk Consolidation (30 production AIX servers)

<table>
<thead>
<tr>
<th>Size (GB)</th>
<th>Used (#)</th>
<th>Unused (#)</th>
<th>System (#)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>7</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>40</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>18</td>
<td>73</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>36</td>
<td>29</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>73</td>
<td>29</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Total:</td>
<td>178</td>
<td>21</td>
<td>54</td>
</tr>
</tbody>
</table>

x100 disk power reduction opportunities by virtualization

spinning but unused disks – recommend SAs to power down
Example Use Case: Database Storage Space Reorganization (270 AIX, 21 HP-UX, 2 Windows production servers)

- DB2, Oracle, Sybase, PostgreSQL, MySQL, Microsoft SQL DBs
- EMC shared storage
- >200 file systems with tablespaces 100% full – unoperational databases

<table>
<thead>
<tr>
<th>Databases (#)</th>
<th>1,076</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (TB)</td>
<td>151.7</td>
</tr>
<tr>
<td>Size Old (TB)</td>
<td>0.4</td>
</tr>
<tr>
<td>Unused (TB)</td>
<td>50.3</td>
</tr>
</tbody>
</table>
Example Use Case: Network File Systems Usage (30 production AIX servers)

<table>
<thead>
<tr>
<th>Usage Type</th>
<th>Clients</th>
<th>Servers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homes</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Application Data</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Bulk Data</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

only a few servers depend on NFS performance
Data Migration for Server Virtualization

- Databases and all other data needs to be transferred to the new images even if all software is reinstalled and reconfigured
- As always: discover, plan, move, test
- Block-level tools
 - move block devices
- File system-level tools
 - move file systems
 - the only way to move data between different file system types e.g., when migrating from Solaris to AIX
- Some tools can capture the data on-the-fly without bringing the servers down or even stopping the services
- Bandwidth is almost always an issue
 - move data in bulk (sometimes physically)
 - resynchronize latest changes
Add Storage

- Installing a new Enterprise Storage System may be more expensive than the Storage System itself
- Same for adding/removing disks (especially non-hot-swappable)
DevOps
IT REVOLUTION is happening now

- **Yesterday:**
 - One security expert/sysadmin/application owner manually manages 10s of servers

- **Tomorrow: 1,000s!**
 - Do not manage a server: learn to automate the process of managing servers

- **Example:**
 - Nathanael Burton, NSA CTO presented at OpenStack summit:
 Team of only 12-15 people manages all NSA OpenStack Cloud infrastructure
DevOps

- A portmanteau of "development" and "operations"
- Term coined in 2008, got popular in 2009
Infrastructure-as-code

- Basic principles:
 - Do no system and software configurations manually on each system
 - Templates describing how to install/configure systems/devices/software/users
e.g., deploy your application as rpm on a set of hosts, describe how to configure it

- How does it affect migrations?
 - Automated discovery of as-is state
 - Automated provisioning
 - Automated verification that configurations do not change (diverge) from standard later
Infrastructure-as-code today

- Highlights of the main players:

<table>
<thead>
<tr>
<th>Tool</th>
<th>Puppet</th>
<th>Chief</th>
<th>Salt</th>
<th>Ansible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>Ruby</td>
<td>Ruby</td>
<td>Python</td>
<td>Python</td>
</tr>
<tr>
<td>First release</td>
<td>2005</td>
<td>2009</td>
<td>2011</td>
<td>2012</td>
</tr>
<tr>
<td>Out-of-order execution</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Push/Pull</td>
<td>Pull (Agents)</td>
<td>Pull (Agents)</td>
<td>Both</td>
<td>Push (Agent-less)</td>
</tr>
<tr>
<td>Notes</td>
<td>More OSs supported, Largest user base</td>
<td>Easier to learn</td>
<td>Infrastructure-as-data</td>
<td>Very simple</td>
</tr>
</tbody>
</table>
Simple Template Examples

- **Puppet**

```ruby
class httpd {
  package { 'httpd-devel':
    ensure => installed,
  }
  service { 'httpd':
    ensure => running,
    enable => true,
    subscribe => Package['httpd-devel'],
  }
}
```

- **Salt**

```yaml
#/srv/salt/mysql.sls
mysql:
  pkg.installed:
    - name: mysql-server
  service.running:
    - enable: True
    - require:
      - pkg: mysql-server
```

- **Ansible**

```yaml
- hosts: webservers
  vars:
    http_port: 80
    max_clients: 200
    remote_user: root
  tasks:
    - name: ensure apache is at the latest version
      yum:
        pkg: httpd
        state: latest
    - name: write the apache config file
      template:
        src=/srv/httpd.j2
        dest=/etc/httpd.conf
      notify:
        - restart apache
    - name: ensure apache is running (and enable it at boot)
      service:
        name: httpd
        state: started
        enabled: yes
      handlers:
        - name: restart apache
          service:
            name: httpd
            state: restarted
```

32
Docker

- Docker is relevant for this lecture because it is:
 - 1) Union file system based
 - 2) DevOps-based

Containers vs. VMs

Containers are isolated, but share OS and, where appropriate, bins/libraries
Docker: layers

- Dockerfile

```
FROM debian:wheezy
WORKDIR /tmp

RUN wget -nv &&
tar -xvf someutility-v1.0.0.tar.gz &&
mv /tmp/someutility-v1.0.0/someutil /usr/bin/someutil &&
rm -rf /tmp/someutility-v1.0.0 &&
rm /tmp/someutility-v1.0.0.tar.gz
```

- DevOps-configured layers
Reading List (storage)

- Nikolai Joukov, B. Pfitzmann, H. V. Ramasamy, and M. V. Devarakonda, Application-Storage Discovery, The 3rd Annual Haifa Experimental Systems Conference (Systor'10), Haifa, Israel, May 2010

- Mohammad Hajjat, Xin Sun, Yu-Wei Sung, Dave Maltz, Sanjay Rao, Kunwadee Sripandkulchrai and Mohit Tawarmlani, "Cloudward Bound: Planning for Benefical Migration of Enterprise Applications to the Cloud", Proceedings of ACM SIGCOMM, New Delhi, India, August 2010

Questions?
Project: Enterprise Systems Compatibility Diagrams

- **Problem:**
 - Diverse set of servers, storage, networking systems, and software
 - Discovery and management software has to be executed on these diverse servers
 - What server/OS, storage, and networking system pairs are compatible and to what extent?

- **You will learn:**
 - Enterprise servers/storage/networking systems and middleware specifics

- **Expected results:**
 - Diagram of systems lineage (at least 1995-2015)
 - **One person is expected to pick one of:**
 1. servers + handheld devices
 2. storage systems
 3. networking systems
 4. databases, application servers, messaging systems
 - Mark lineage/families/milestones (e.g., 64-bit platform)
 - Mark systems with OS types that they can run (e.g., Windows-based OS on some storage systems)
 - Mark software with hardware families they can run on (e.g., System Z)
 - Specify hardware details

- **Grading:**
 - Expect to have no major vendor, architecture, or milestone missing for high grades – diversity is key
 Even if some companies do not exist today they should be included
 - Depict lineages and vendors mergers (e.g., what is the lineage of IBM XiV?)
 - Diagrams should be printable on just a few pages and presented clearly
 Discovery results presentation and clarity is a big factor so be prepared to spend time on it
 - You will have only several minutes to present your work so the diagrams should be self-explanatory
 - You will be compared to all other students so make sure that the amount of work and details is appropriate
 Specify the sources of information

- **Mentor:** Nikolai Joukov