Search Engine Architecture

8. Clustering
Problem Setup

• Arrange items into clusters
 • High similarity between objects in the same cluster
 • Low similarity between objects in different clusters

Applications

• Exploratory analysis of large collections of objects
• Image segmentation
• Recommender systems
• Cluster hypothesis in information retrieval
• Computational biology and bioinformatics
• Pre-processing for many other algorithms

Three Approaches

• Hierarchical
• K-Means
• Gaussian Mixture Models

Hierarchical Agglomerative Clustering

- Start with each document in its own cluster
- Until there is only one cluster:
 - Find the two clusters c_i and c_j, that are most similar
 - Replace c_i and c_j with a single cluster $c_i \cup c_j$
- The history of merges forms the hierarchy

HAC in Action

Cluster Merging

• Which two clusters do we merge?
• What’s the similarity between two clusters?
 • Single Link: similarity of two most similar members
 • Complete Link: similarity of two least similar members
 • Group Average: average similarity between members

Link Functions

- Single link:
 - Uses maximum similarity of pairs:
 \[\text{sim}(c_i, c_j) = \max_{x \in c_i, y \in c_j} \text{sim}(x, y) \]
 - Can result in “straggly” (long and thin) clusters due to chaining effect
- Complete link:
 - Use minimum similarity of pairs:
 \[\text{sim}(c_i, c_j) = \min_{x \in c_i, y \in c_j} \text{sim}(x, y) \]
 - Makes more “tight” spherical clusters

MapReduce Implementation

• What’s the inherent challenge?
• One possible approach:
 • Iteratively use fast heuristic to group together similar items
 • When dataset is small enough, run HAC in memory on a single machine
 • Observation: structure at the leaves is not very important

K-Means Algorithm

- Let d be the distance between documents
- Define the centroid of a cluster to be:
 \[\mu(c) = \frac{1}{|c|} \sum_{x \in c} x \]
- Select k random instances \(\{s_1, s_2, \ldots, s_k\} \) as seeds.
- Until clusters converge:
 - Assign each instance x_i to the cluster c_j such that $d(x_i, s_j)$ is minimal
 - Update the seeds to the centroid of each cluster
 - For each cluster c_j, $s_j = \mu(c_j)$
Basic MapReduce Implementation

```java
1: class Mapper
2:   method Configure()
3:     c ← LoadClusters()
4:   method Map(id i, point p)
5:     n ← NearestClusterID(clusters c, point p)
6:     p ← ExtendPoint(point p)
7:     Emit(clusterid n, point p)
1: class Reducer
2:   method Reduce(clusterid n, points [p₁, p₂, ...])
3:     s ← InitPointSum()
4:     for all point p ∈ points do
5:         s ← s + p
6:     m ← ComputeCentroid(point s)
7:     Emit(clusterid n, centroid m)
```

K-Means Clustering Example

Pick seeds
Reassign clusters
Compute centroids
Reassign clusters
Compute centroids
Reassign clusters
Converged!

MapReduce Implementation w/ IMC

1: class Mapper
2: method Configure()
3: c ← LoadClusters()
4: H ← InitAssociativeArray()
5: method Map(id i, point p)
6: n ← NearestClusterID(clusters c, point p)
7: p ← ExtendPoint(point p)
8: H{n} ← H{n} + p
9: method Close()
10: for all clusterid n ∈ H do
11: Emit(clusterid n, point H{n})
1: class Reducer
2: method Reduce(clusterid n, points [p1, p2, ...])
3: s ← InitPointSum()
4: for all point p ∈ points do
5: s ← s + p
6: m ← ComputeCentroid(point s)
7: Emit(clusterid n, centroid m)

Implementation Notes

• Standard setup of iterative MapReduce algorithms
 • Driver program sets up MapReduce job
 • Waits for completion
 • Checks for convergence
 • Repeats if necessary
• Must be able to keep cluster centroids in memory
 • With large k, large feature spaces, potentially an issue
 • Memory requirements of centroids grow over time!
• Variant: k-medoids

Clustering w/ Gaussian Mixture Models

- Model data as a mixture of Gaussians
- Given data, recover model parameters

Gaussian Distributions

- **Univariate Gaussian (i.e., Normal):**
 \[
p(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi} \sigma} \exp \left(-\frac{1}{2\sigma^2}(x - \mu)^2 \right)
 \]
 A random variable with such a distribution we write as:
 \[
x \sim \mathcal{N}(\mu, \sigma^2)
 \]

- **Multivariate Gaussian:**
 \[
p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp \left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1} (x - \mu) \right)
 \]
 A vector-value random variable with such a distribution we write as:
 \[
x \sim \mathcal{N}(\mu, \Sigma)
 \]

Univariate Gaussian

Multivariate Gaussians

Figure 2:
The figure on the left shows a heatmap indicating values of the density function for an axis-aligned multivariate Gaussian with mean $\mu = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and diagonal covariance matrix $\Sigma = \begin{bmatrix} 25 & 0 \\ 0 & 9 \end{bmatrix}$. Notice that the Gaussian is centered at $(3, 2)$, and that the isocontours are all elliptically shaped with major/minor axis lengths in a 5:3 ratio. The figure on the right shows a heatmap indicating values of the density function for a non-axis-aligned multivariate Gaussian with mean $\mu = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and covariance matrix $\Sigma = \begin{bmatrix} 10 & 5 \\ 5 & 5 \end{bmatrix}$. Here, the ellipses are again centered at $(3, 2)$, but now the major and minor axes have been rotated via a linear transformation.

Gaussian Mixture Models

- Model parameters
 - Number of components: K
 - “Mixing” weight vector: π
 - For each Gaussian, mean and covariance matrix: $\mu_{1:K}$ $\Sigma_{1:K}$
- Varying constraints on co-variance matrices
 - Spherical vs. diagonal vs. full
 - Tied vs. untied

Learning for Simple Univariate Case

- Problem setup:
 - Given number of components: K
 - Given points: $x_{1:N}$
 - Learn parameters: $\pi, \mu_{1:K}, \sigma_{1:K}^2$
- Model selection criterion: maximize likelihood of data
- Introduce indicator variables:
 $$z_{n,k} = \begin{cases}
1 & \text{if } x_n \text{ is in cluster } k \\
0 & \text{otherwise}
\end{cases}$$
- Likelihood of the data:
 $$p(x_{1:N}, z_{1:N,1:K} | \mu_{1:K}, \sigma_{1:K}^2, \pi)$$

EM to the Rescue!

• We’re faced with this:

\[p(x_{1:N}, z_{1:N,1:K} | \mu_{1:K}, \sigma^2_{1:K}, \pi) \]

• It’d be a lot easier if we knew the z’s!

• **Expectation Maximization**

 • Guess the model parameters

 • E-step: Compute posterior distribution over latent (hidden) variables given the model parameters

 • M-step: Update model parameters using posterior distribution computed in the E-step

 • Iterate until convergence

EM for Univariate GMMs

- Initialize: $\pi, \mu_{1:K}, \sigma_{1:K}^2$
- Iterate:
 - E-step: compute expectation of z variables
 \[
 \mathbb{E}[z_{n,k}] = \frac{\mathcal{N}(x_n | \mu_k, \sigma_k^2) \cdot \pi_k}{\sum_{k'} \mathcal{N}(x_n | \mu_{k'}, \sigma_{k'}^2) \cdot \pi_{k'}}
 \]
 - M-step: compute new model parameters
 \[
 \pi_k = \frac{1}{N} \sum_n z_{n,k}
 \]
 \[
 \mu_k = \frac{1}{\sum_n z_{n,k}} \sum_n z_{n,k} \cdot x_n
 \]
 \[
 \sigma_k^2 = \frac{1}{\sum_n z_{n,k}} \sum_n z_{n,k} \|x_n - \mu_k\|^2
 \]

MapReduce Implementation

Map

$$\mathbb{E}[z_{n,k}] = \frac{\mathcal{N}(x_n | \mu_k, \sigma_k^2) \cdot \pi_k}{\sum_{k'} \mathcal{N}(x_n | \mu_{k'}, \sigma_{k'}^2) \cdot \pi_{k'}}$$

Reduce

$$\pi_k = \frac{1}{N} \sum_n z_{n,k}$$

$$\mu_k = \frac{1}{\sum_n z_{n,k}} \sum_n z_{n,k} \cdot x_n$$

$$\sigma_k^2 = \frac{1}{\sum_n z_{n,k}} \sum_n z_{n,k} ||x_n - \mu_k||^2$$

K-Means vs. GMMs

<table>
<thead>
<tr>
<th></th>
<th>K-Means</th>
<th>GMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map</td>
<td>Compute distance of points to centroids</td>
<td>E-step: compute expectation of z indicator variables</td>
</tr>
<tr>
<td>Reduce</td>
<td>Recompute new centroids</td>
<td>M-step: update values of model parameters</td>
</tr>
</tbody>
</table>

Summary

- Hierarchical clustering
 - Difficult to implement in MapReduce
- K-Means
 - Straightforward implementation in MapReduce
- Gaussian Mixture Models
 - Implementation conceptually similar to k-means, more “bookkeeping”