Search Engine Architecture

7. Classification
Agenda

- Introduction to machine learning
- Gradient descent
- Logistic regression
- Demo
- Stochastic gradient descent
- Scaling optimization
Machine Learning: High-Level

- Algorithms that can learn from data
- Supervised
 - Infer a function from labeled training data
- Unsupervised
 - No labels in training data
 - Find interesting patterns or structure
Supervised Machine Learning

- The generic problem of function induction given sample instances of input and output
 - Classification: output draws from finite discrete labels
 - Regression: output is a continuous value
- Focus here on supervised classification
 - Suffices to illustrate large-scale machine learning

This is not meant to be an exhaustive treatment of machine learning!

Applications

- Spam detection
- Content (e.g. movie) classification
- POS tagging
- Friendship recommendation
- Document ranking
- Many, many more!

classification

SVC
Ensemble Classifiers

kernel approximation

KNeighbors Classifier

SGD Classifier

Naive Bayes

Text Data

Linear SVC

<100K samples

do you have labeled data

Spectral Clustering
GMM

KMeans

number of
Supervised Binary Classification

• Restrict output label to be *binary*
 • Yes/No
 • 1/0
• Binary classifiers form a primitive building block for multi-class problems
 • One vs. rest classifier ensembles
 • Classifier cascades

Limits of Supervised Classification?

• Why is this a big data problem?
 • Isn’t gathering labels a serious bottleneck?
• Solution: user behavior logs
 • Learning to rank
 • Computational advertising
 • Link recommendation
• The virtuous cycle of data-driven products

The Task

Given \(D = \{(x_i, y_i)\}_{i}^{n} \)

\[x_i = [x_1, x_2, x_3, \ldots, x_d] \]

\[y \in \{0, 1\} \]

Induce \(f : X \rightarrow Y \)

Such that loss is minimized

\[\frac{1}{n} \sum_{i=0}^{n} \ell(f(x_i), y_i) \]

Typically, consider functions of a parametric form:

\[\arg\min_{\theta} \frac{1}{n} \sum_{i=0}^{n} \ell(f(x_i; \theta), y_i) \]

Key insight: machine learning as an optimization problem!
(closed form solutions generally not possible)

Gradient Descent: Preliminaries

- **Rewrite:**
 \[
 \arg \min_{\theta} \frac{1}{n} \sum_{i=0}^{n} \ell(f(x_i; \theta), y_i) \quad \Rightarrow \quad \arg \min_{\theta} L(\theta)
 \]

- **Compute gradient:**
 - “Points” to fastest increasing “direction”
 \[
 \nabla L(\theta) = \left[\frac{\partial L(\theta)}{\partial w_0}, \frac{\partial L(\theta)}{\partial w_1}, \ldots, \frac{\partial L(\theta)}{\partial w_d} \right]
 \]

- **So, at any point:**
 \[
 b = a - \gamma \nabla L(a)
 \]
 \[
 L(a) \geq L(b)
 \]

Gradient Descent: Iterative Update

• Start at an arbitrary point, iteratively update:
 \[\theta^{(t+1)} \leftarrow \theta^{(t)} - \gamma^{(t)} \nabla L(\theta^{(t)}) \]

• We have:
 \[L(\theta^{(0)}) \geq L(\theta^{(1)}) \geq L(\theta^{(2)}) \ldots \]

• Lots of details:
 • Figuring out the step size
 • Getting stuck in local minima
 • Convergence rate

Gradient Descent

Repeat until convergence:

$$\theta^{(t+1)} \leftarrow \theta^{(t)} - \gamma^{(t)} \frac{1}{n} \sum_{i=0}^{n} \nabla \ell(f(x_i; \theta^{(t)}), y_i)$$

Intuition behind the math...

\[\ell(x) \]

\[\frac{d}{dx} \ell \rightarrow \nabla \ell \]

\[\theta^{(t+1)} \leftarrow \theta^{(t)} - \gamma^{(t)} \frac{1}{n} \sum_{i=0}^{n} \nabla \ell(f(x_i; \theta^{(t)}), y_i) \]

New weights Old weights Update based on gradient

Gradient Descent

\[\theta^{(t+1)} \leftarrow \theta^{(t)} - \gamma^{(t)} \frac{1}{n} \sum_{i=0}^{n} \nabla \ell(f(x_i; \theta^{(t)}), y_i) \]
Lots More Details...

- Gradient descent is a “first order” optimization technique
 - Often, slow convergence
 - Conjugate techniques accelerate convergence
- Newton and quasi-Newton methods:
 - Intuition: Taylor expansion
 \[f(x + \Delta x) = f(x) + f'(x)\Delta x + \frac{1}{2} f''(x)\Delta x^2 \]
 - Requires the Hessian (square matrix of second order partial derivatives): impractical to fully compute

Logistic Regression
Logistic Regression: Preliminaries

• Given \(D = \{(x_i, y_i)\}_{i}^{n} \)
 \[
 x_i = [x_1, x_2, x_3, \ldots, x_d]
 \]
 \(y \in \{0, 1\} \)

• Let’s define:
 \[
 f(x; w): \mathbb{R}^{d} \to \{0, 1\}
 \]
 \[
 f(x; w) = \begin{cases}
 1 & \text{if } w \cdot x \geq t \\
 0 & \text{if } w \cdot x < t
 \end{cases}
 \]

• Interpretation:
 \[
 \ln \left[\frac{\Pr(y = 1|x)}{\Pr(y = 0|x)} \right] = w \cdot x
 \]
 \[
 \ln \left[\frac{\Pr(y = 1|x)}{1 - \Pr(y = 1|x)} \right] = w \cdot x
 \]

Why log odds?

- Dot product alone would be unbounded (not a probability)
 - Solve using odds
- Empirically, we see diminishing returns
 - Solve using log

\[
\ln \left[\frac{\Pr(y = 1|x)}{1 - \Pr(y = 1|x)} \right] = w \cdot x
\]
Relation to the Logistic Function

• After some algebra:

\[Pr(y = 1|x) = \frac{e^{w \cdot x}}{1 + e^{w \cdot x}} \]

\[Pr(y = 0|x) = \frac{1}{1 + e^{w \cdot x}} \]

• The logistic function:

\[f(z) = \frac{e^z}{e^z + 1} \]

Training an LR Classifier

- Maximize the conditional likelihood:
 \[
 \arg \max_w \prod_{i=1}^n \Pr(y_i|x_i, w)
 \]

- Define the objective in terms of conditional log likelihood:
 \[
 L(w) = \sum_{i=1}^n \ln \Pr(y_i|x_i, w)
 \]

- We know \(y \in \{0, 1\} \), so:
 \[
 \Pr(y|x, w) = \Pr(y = 1|x, w)^y [1 - \Pr(y = 0|x, w)]^{1-y}
 \]

- Substituting:
 \[
 L(w) = \sum_{i=1}^n \left(y_i \ln \Pr(y_i = 1|x_i, w) + (1 - y_i) \ln \Pr(y_i = 0|x_i, w) \right)
 \]

LR Classifier Update Rule

- Take the derivative:
 \[L(w) = \sum_{i=1}^{n} \left(y_i \ln \Pr(y_i = 1|x_i, w) + (1 - y_i) \ln \Pr(y_i = 0|x_i, w) \right) \]
 \[\frac{\partial}{\partial w} L(w) = \sum_{i=0}^{n} x_i \left(y_i - \Pr(y_i = 1|x_i, w) \right) \]

- General form for update rule:
 \[w^{(t+1)} \leftarrow w^{(t)} + \gamma^{(t)} \nabla_w L(w^{(t)}) \]

\[\nabla L(w) = \left[\frac{\partial L(w)}{\partial w_0}, \frac{\partial L(w)}{\partial w_1}, \ldots, \frac{\partial L(w)}{\partial w_d} \right] \]

- Final update rule:
 \[w^{(t+1)}_i \leftarrow w^{(t)}_i + \gamma^{(t)} \sum_{j=0}^{n} x_{j,i} \left(y_j - \Pr(y_j = 1|x_j, w^{(t)}) \right) \]

Lots more details...

- Overfitting
 - Model tuned too tightly to training data
- Regularization
 - E.g. add sum of square weights to loss function (L2)
- Different loss functions
 - E.g. hinge, epsilon-insensitive
- Evaluation
 - Accuracy, precision, recall, F1, ...
 - Sound familiar?
- Cross-validation

Demo
MapReduce Implementation

$$\theta^{(t+1)} \leftarrow \theta^{(t)} - \gamma^{(t)} \frac{1}{n} \sum_{i=0}^{n} \nabla \ell(f(x_i; \theta^{(t)}), y_i)$$

iterate until convergence

compute partial gradient

mappers

single reducer

update model

Shortcomings

• MapReduce is bad at iterative algorithms
 • Hadoop has high job startup costs
 • Awkward to retain state across iterations
• High sensitivity to skew
 • Iteration speed bounded by slowest task
• Potentially poor cluster utilization
 • Must shuffle all data to a single reducer
• Some possible tradeoffs
 • Number of iterations vs. complexity of computation per iteration
 • E.g., L-BFGS: faster convergence, but more to compute

Gradient Descent

Source: Wikipedia (Hills)
Stochastic Gradient Descent
Batch vs. Online

Gradient Descent

$$\theta^{(t+1)} \leftarrow \theta^{(t)} - \gamma^{(t)} \frac{1}{n} \sum_{i=0}^{n} \nabla \ell(f(x_i; \theta^{(t)}), y_i)$$

“batch” learning: update model after considering all training instances

Stochastic Gradient Descent (SGD)

$$\theta^{(t+1)} \leftarrow \theta^{(t)} - \gamma^{(t)} \nabla \ell(f(x; \theta^{(t)}), y)$$

“online” learning: update model after considering each (randomly-selected) training instance

“mini-batch” learning: compromise between batch and fully online

In practice... just as good!

Ensembles
Ensemble Learning

• Learn multiple models, combine results from different models to make prediction

• Why does it work?
 • If errors uncorrelated, multiple classifiers being wrong is less likely
 • Reduces the variance component of error

• A variety of different techniques:
 • Majority voting
 • Simple weighted voting:

\[
y = \arg\max_{y \in Y} \sum_{k=1}^{n} \alpha_k p_k(y|x)
\]

• Model averaging

Practical Notes

• Common implementation:
 • Train classifiers on different input partitions of the data
 • Embarrassingly parallel!
• Contrast with bagging
• Contrast with boosting

MapReduce Implementation

\[\theta^{(t+1)} \leftarrow \theta^{(t)} - \gamma^{(t)} \nabla \ell(f(x; \theta^{(t)}), y) \]

Sentiment Analysis Case Study

Lin and Kolcz, SIGMOD 2012

- Binary polarity classification: \{positive, negative\} sentiment
 - Independently interesting task
 - Illustrates end-to-end flow
 - Use the “emoticon trick” to gather data

- Data
 - Test: 500k positive/500k negative tweets from 9/1/2011
 - Training: \{1m, 10m, 100m\} instances from before (50/50 split)

- Features: Sliding window byte-4grams

- Models:
 - Logistic regression with SGD (L2 regularization)
 - Ensembles of various sizes (simple weighted voting)

Diminishing returns...

Ensembles with 10m instances better than 100m single classifier!

Scaling Stochastic Gradient Descent
(From Jeff Dean’s NIPS 2014 Keynote)
Neural Networks

Output:

Input:
2012 Supervised Vision Model: “AlexNet”

Softmax to predict object class

Fully-connected layers (and trained w/ DropOut)

Convolutional layers (same weights used at all spatial locations in layer)

~60M parameters

Basic architecture developed by Krizhevsky, Sutskever & Hinton
Won 2012 ImageNet challenge with 16.4% top-5 error rate
Vision models, 2014 edition: GoogLeNet

Module with 6 separate convolutional layers

24 layers deep!

No fully-connected layer, so only \(~6M\) parameters (but \(~2B\) floating point operations per example)

Developed by team of Google Researchers:
Won 2014 ImageNet challenge with 6.66\% top-5 error rate
Data Parallelism:
Asynchronous Distributed Stochastic Gradient Descent

Parameter Server: $p' = p + \Delta p$

Model Workers

Data Shards
Staleness

Parameter Server

Model Workers

Data Shards

Too old! Ignore!

Very slow