Markov Models

notes for
CSCI-GA.2590
Prof. Grishman
Markov Model

• In principle each decision could depend on all the decisions which came before (the tags on all preceding words in the sentence)

• But we’ll make life simple by assuming that the decision depends on only the immediately preceding decision
 • [first-order] Markov Model
 • representable by a finite state transition network
 • $T_{ij} =$ probability of a transition from state i to state j
Finite State Network

cat: meow

dog: woof

start

dog: woof

cat: meow

end

0.50

0.30

0.30

0.40

0.40

0.50

0.30

0.30
Our bilingual pets

• Suppose our cat learned to say “woof” and our dog “meow”

• ... they started chatting in the next room

• ... and we wanted to know who said what
Hidden State Network

- Start
- Dog
- Cat
- End

Transitions:
- Woof
- Meow
• How do we predict
 • When the cat is talking: $t_i = \text{cat}$
 • When the dog is talking: $t_i = \text{dog}$

• We construct a probabilistic model of the phenomenon

• And then seek the most likely state sequence S

$$S = \arg \max_{t_1 \ldots t_n} P(t_1 \ldots t_n | w_1 \ldots w_n)$$
Hidden Markov Model

• Assume current word depends only on current tag

\[S = \underset{t_1...t_n}{\operatorname{arg\,max}} P(t_1...t_n | w_1...w_n) \]

\[= \underset{t_1...t_n}{\operatorname{arg\,max}} P(w_1,...,w_n | t_1,...,t_n)P(t_1,...,t_n) \]

\[= \underset{t_1...t_n}{\operatorname{arg\,max}} \prod_{i=1}^{n} P(w_i | t_i)P(t_i | t_{i-1}) \]