Learning to Extract

CSCI-GA.2590 – Supplement for Lecture 8

Ralph Grishman
Flavors of learning

• Supervised learning
 – All training data is labeled

• Semi-supervised learning
 – Part of training data is labeled (‘the seed’)
 – Make use of redundancies to learn labels of additional data, then train model
 – Co-training
 – Reduces amount of data which must be hand-labeled to achieve a given level of performance

• Active learning
 – Start with partially labeled data
 – System selects additional ‘informative’ examples for user to label
Semi-supervised learning

L = labeled data
U = unlabeled data
1. L = seed
 -- repeat 2-4 until stopping condition is reached
2. C = classifier trained on L
3. Apply C to U.
 N = most confidently labeled items
4. L += N; U -= N
Confidence

How to estimate confidence?

• Binary probabilistic classifier
 – Confidence = | P – 0.5 | * 2

• N-ary probabilistic classifier
 – Confidence = P₁ – P₂
 where
 P₁ = probability of most probable label
 P₂ = probability of second most probable label

• SVM
 – Distance from separating hyperplane
Co-training

- Two ‘views’ of data (subsets of features)
 - Producing two classifiers $C_1(x)$ and $C_2(x)$
- Ideally
 - Independent
 - Each sufficient to classify data
- Apply classifiers in alternation (or in parallel)
 1. $L = \text{seed}$
 -- repeat 2-7 until stopping condition is reached
 2. $C_1 = \text{classifier trained on L}$
 3. Apply C_1 to U.
 $N = \text{most confidently labeled items}$
 4. $L += N; \ U -= N$
 5. $C_2 = \text{classifier trained on L}$
 6. Apply C_2 to U.
 $N = \text{most confidently labeled items}$
 7. $L += N; \ U -= N$
Problems with semi-supervised learning

• When to stop?
 • U is exhausted
 • Reach performance goal using held-out labeled sample
 • After fixed number of iterations based on similar tasks

• Poor confidence estimates
 • Errors from poorly-chosen data rapidly magnified
Elements of Information Extraction

• Identifying the entities involved
 • each entity may have one or more mentions
 • a mention may be a name, a common noun phrase, or a pronoun
 – we will discuss pronouns more next week

• Identifying the predicates asserted of these entities
 • for simplicity, we will limit ourselves to binary predicates connecting two entities
What we have to learn

• An extraction task finds instances of a particular semantic relation between particular semantic classes of entities

• We need to
 • Identify names in this semantic class
 • Identify nominals in this semantic class
 • Identify ways of expressing this relation

• We would like to do this as automatically as possible
Learning Names

• We have discussed hand-coded rules and supervised models (HMM, MEMM, CRF) for NER [named entity recognition]

• We will now consider
 • Semi-supervised models
 • Active learning
Semi-supervised NER

- Annotating a large corpus to train a high-performance NER is fairly expensive

- We can use the idea of name consistency across documents to train an NER using
 - A smaller annotated corpus
 - A large unannotated corpus
Co-training for NER

• We can split the features for NER into two sets:
 – Spelling features
 (the entire name + tokens in the name)
 – Context features
 (left and right contexts + syntactic context)

• Start with a seed
 – E.g., some common unambiguous full names

• Iteratively grow seed, alternatively applying spelling and context models and adding most - confidently-labeled instances to seed
Co-training for NER

1. **Seed**
2. **Build context model**
3. **Apply context model**
4. **Add most confident exs to labeled set**
5. **Apply spelling model**
6. **Build spelling model**
7. **Add most confident exs to labeled set**
8. **Return to Step 2**
Name co-training: results

• 3 classes: person, organization, location (and ‘other’)
• Data: 1M sentences of news
• Seed:
 • New York, California, U.S. → location
 • contains(Mr.) → person
 • Microsoft, IBM → organization
 • contains(Incorporated) → organization
• Took names appearing with appositive modifier or as complement of preposition (88K name instances)
• Accuracy: 83%
• Clean accuracy (ignoring names not in one of the 3 categories): 91%

• (Collins and Singer 1999)
Semi-supervised NER:
when to stop

• Semi-supervised NER labels a few more examples at every iteration
 – It stops when it runs out of examples to label

• This is fine if
 – Names are easily identified (e.g., by capitalization in English)
 – Most names fall into one of the categories being trained (e.g., people, organizations, and locations for news stories)
Semi-supervised NER: semantic drift

• Semi-supervised NER doesn’t work so well if
 – The set of names is hard to identify
 • Monocase languages
 • Extended name sets including lower-case terms
 – The categories being trained cover only a small portion of the set of names

• The result is semantic drift and semantic spread
 – The name categories gradually grow to include related terms
Fighting Semantic Drift

• We can fight drift by training a larger, more inclusive set of categories
 – Including ‘negative’ categories
 • Categories we don’t really care about but include to compete with the original categories
 – These negative categories can be built
 • By hand (Yangarber et al. 2003)
 • Or automatically (McIntosh 2010)
Active Learning

• For supervised learning, we typically annotate text data sequentially

• Not necessarily the most efficient approach
 • Most natural language phenomena have a Zipfian distribution ... a few very common constructs and lots of infrequent constructs
 • After you have annotated “Spain” 50 times as a location, the NER model is little improved by annotating it one more time

• We want to select the most *informative* examples and present them to the annotator
 • The data which, if labeled, is most likely to reduce NER error
How to select informative examples?

• Uncertainty-based sampling
 – For binary classifier
 • For MaxEnt, probability near 50%
 • For SVM, data near separating hyperplane
 – For n-ary classifier, data with small margin

• Committee-based sampling
 – Data on which committee members disagree
 – (co-testing ... use two classifiers based on independent views)
Representativeness

- It’s more helpful to annotate examples involving common features
 - Weighting these features correctly will have a larger impact on error rate

- So we rank examples by frequency of features in the entire corpus
Batching and Diversity

• Each iteration of active learning involves running classifier on (a large) unlabeled corpus
 – This can be quite slow
 – Meanwhile annotator is waiting for something to annotate

• So we run active learning in batches
 – Select best n examples to annotate each time
 – But all items in a batch are selected using the same criteria and same system state, and so are likely to be similar

• To avoid example overlap, we impose a diversity requirement with a batch: limit maximum similarity of examples within a batch
 – Compute similarity based on example feature vectors
Simulated Active Learning

• True active learning experiments are
 – Hard to reproduce
 – Very time consuming

• So most experiments involve simulated active learning:
 – “unlabeled” data has really been labeled, but the labels have been hidden
 – When data is selected, labels are revealed
 – Disadvantage: “unlabeled” data can’t be so bit

• This leads us to ignore lots of issues of true active learning:
 – An annotation unit of one sentence or even one token may not be efficient for manual annotation
 – So reported speed-ups may be optimistic (typical reports reduce by half the amount of data to achieve a given NER accuracy
Limitations

• Cited performance is for well matched training and test
 • Same domain
 • Same source
 • Same epoch
 – Performance deteriorates rapidly if less matched
 • NER trained on Reuters (F=91),
 tested on Wall Street Journal (F=64) [Ciaramita and Altun 2003]
 – Work on NER adaptation is vital

• Adding rarer classes to NER is difficult
 – Supervised learning inefficient
 – Semi-supervised learning is subject to semantic drift
Learning Nominals

• For gathering the nominals belonging to a semantic class, we use bootstrapping combined with human review
 • A simplified form of active learning
 • Start with seeds
 • Rank other nouns based on distributional similarity
 • Review terms in rank order
 • Optionally rerank after labeling some terms
Learning Relations

• A *relation* is a predication about a pair of entities:

 – Rodrigo works for UNED.
 – Alfonso lives in Tarragona.
 – Otto’s father is Ferdinand.

• Typically they represent information which is permanent or of extended duration.
History of relations

• Relations were introduced in MUC-7 (1997)
 • 3 relations

• Extensively studied in ACE (2000 – 2007)
 • lots of training data

• Effectively included in KBP
ACE Relations

• Several revisions of relation definitions
 • With goal of having a set of relations which can be more consistently annotated

• 5-7 major types, 19-24 subtypes

• Both entities must be mentioned in the same sentence
 – Do not get a parent-child relation from
 • Ferdinand and Isabella were married in 1481. A son was born in 1485.
 – Or an employee relation for
 • Bank Santander replaced several executives. Alfonso was named an executive vice president.

• Base for extensive research
 – On supervised and semi-supervised methods
2004 Ace Relation Types

<table>
<thead>
<tr>
<th>Relation type</th>
<th>Subtypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical</td>
<td>Located, Near, Part-whole</td>
</tr>
<tr>
<td>Personal-social</td>
<td>Business, Family, Other</td>
</tr>
<tr>
<td>Employment / Membership / Subsidiary</td>
<td>Employ-executive, Employ-staff, Employ-undetermined, Member-of-group, Partner, Subsidiary, Other</td>
</tr>
<tr>
<td>Agent-artifact</td>
<td>User-or-owner, Inventor-or-manufacturer, Other</td>
</tr>
<tr>
<td>Person-org affiliation</td>
<td>Ethnic, Ideology, Other</td>
</tr>
<tr>
<td>GPE affiliation</td>
<td>Citizen-or-resident, Based-in, Other</td>
</tr>
<tr>
<td>Discourse</td>
<td>-</td>
</tr>
</tbody>
</table>
KBP Slots

• Many KBP slots represent relations between entities:
 • Member_of
 • Employee_of
 • Country_of_birth
 • Countries_of_residence
 • Schools_attended
 • Spouse
 • Parents
 • Children ...

• Entities do not need to appear in the same sentence
• More limited training data
 • Encouraged semi-supervised methods
Characteristics

• Relations appear in a wide range of forms:
 – Embedded constructs (one argument contains the other)
 • within a single noun group
 – John’s wife
 • linked by a preposition
 – the president of Apple
 – Formulaic constructs
 – Tarragona, Spain
 – Longer-range (‘predicate-linked’) constructs
 • With a predicate disjoint from the arguments
 – Fred lived in New York
 – Fred and Mary got married
Hand-crafted patterns

• Most instances of relations can be identified by the types of the entities and the words between the entities
 • But not all: Fred and Mary got married.
• So we can start by listing word sequences:
 • Person lives in location
 • Person lived in location
 • Person resides in location
 • Person owns a house in location
 • ...

-Generalizing patterns

- We can get better coverage through syntactic generalization:
 - Specifying base forms
 - Person <v base=reside> in location
 - Specifying chunks
 - Person <vgroup base=reside> in location
 - Specifying optional elements
 - Person <vgroup base=reside> [<pp>] in location
Supervised learning

• Collect training data
 – Annotate corpus with entities and relations
 – For every pair of entities in a sentence
 • If linked by a relation, treat as positive training instance
 • If not linked, treat as a negative training instance

• Train model
 – For \(n \) relation types, either
 • Binary (identification) model + \(n \)-way classifier model or
 • Unified \(n+1 \)-way classifier

• On test data
 – Apply entity classifier
 – Apply relation classifier to every pair of entities in same sentence
Supervised relation learner: features

- Heads of entities
- Types of entities
- Distance between entities
- Containment relations
- Word sequence between entities
- Individual words between entities
- Dependency path
- Individual words on dependency path
Kernel Methods

- Goal is to find training examples similar to test case
 - Similarity of word sequence or tree structure
 - Determining similarity through features is awkward
 - Better to define a similarity measure directly: a kernel function
- Kernels can be used directly by
 - SVMs
 - Memory-based learners (k-nearest-neighbor)
- Kernels defined over
 - Sequences
 - Parse or Dependency Trees
Semi-supervised methods

- Preparing training data is more costly than for names
 - Must annotate entities and relations
- So there is a strong motivation to minimize training data through semi-supervised methods
- As for names, we will adopt a co-training approach:
 - Feature set 1: the two entities
 - Feature set 2: the contexts between the entities
- We will limit the bootstrapping
 - to a specific pair of entity types
 - and to instances where both entities are named
Semi-supervised learning

• Seed:
 • [Moby Dick, Herman Melville]

• Contexts for seed:
 • ... wrote ...
 • ... is the author of ...

• Other pairs appearing in these contexts
 • [Animal Farm, George Orwell]
 • [Don Quixote, Miguel de Cervantes]

• Additional contexts ...
Co-training for relations

- Find occurrences of seed tuples
- Generate new seed tuples
- Generate extraction patterns
- Tag entities
Ranking contexts

• If relation R is functional, and $[X, Y]$ is a seed, then $[X, Y']$, $Y' \neq Y$, is a negative example.

• Confidence of pattern P

$$Conf(P) = \frac{P.positive}{P.positive + P.negative}$$

• where

$P.positive$ = number of positive matches to pattern P

$P.negative$ = number of negative matches to pattern P
Ranking pairs

• Once a confidence has been assigned to each pattern, we can assign a confidence to each new pair based on the patterns in which it appears
 – Confidence of best pattern
 – Combination assuming patterns are independent

\[
Conf(X,Y) = 1 - \prod_{P \in \text{contexts of } (X,Y)} (1 - Conf(P))
\]
Semantic drift

• Ranking / filtering quite effective for functional relations (book → author, company → headquarters)
 – But expansion may occur into other relations generally implied by seed (‘semantic drift’)
 • Ex: from governor → state governed to person → state born in

• Precision poor without functional property
Distant supervision

- Sometimes a large data base is available involving the type of relation to be extracted
 - A number of such public data bases are now available, such as FreeBase and Yago

- Text instances corresponding to some of the data base instances can be found in a large corpus or from the Web

- Together these can be used to train a relation classifier
Distant supervision: approach

• Given:
 • Data base for relation R
 • Corpus containing information about relation R
• Collect <X, Y> pairs from data base relation R
• Collect sentences in corpus containing both X and Y
 • These are positive training examples
• Collect sentences in corpus containing X and some Y’ with the same entity type as Y such that <X,Y’> is not in the data base
 • These are negative training examples
• Use examples to train classifier which operates on pairs of entities
Distant supervision: limitations

• The training data produced through distant supervision may be quite noisy:
 – If many $<X, Y>$ pairs are involved, the classifier may learn the wrong relation

• If a pair $<X, Y>$ is involved in multiple relations, $R<X, Y>$ and $R’<X, Y>$ and the data base represents relation R, the text instance may represent relation $R’$, yielding a false positive training instance
 – If many $<X, Y>$ pairs are involved, the classifier may learn the wrong relation

• If a relation is incomplete in the data base ... for example, if resides_in$<X, Y>$ contains only a few of the locations where a person has resided ... then we will generate many false negatives, possibly leading the classifier to learn no relation at all
Evaluation

• Matching relation has matching relation type and arguments
 – Count correct, missing, and spurious relations
 – Report precision, recall, and F measure
• Variations
 – Perfect mentions vs. system mentions
 • Performance much worse with system mentions
 – an error in either mention makes relation incorrect
 – Relation type vs. relation subtype
 – Name pairs vs. all mentions
 • Bootstrapped systems trained on name-name patterns
• Best ACE systems on perfect mentions: $F = 75$