CSCI-GA.1144-001

PAC II

Lecture 8: Algorithms II

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com
A Quick Refresh

• We assume we execute our algorithm on RAM.
 – In RAM, instructions are executed one after the other, with no concurrency.
 – RAM model contains instructions available in common computers.
 – Each instruction takes a constant amount of time.
 – We do not attempt to model memory hierarchy.

• We care more about the worst-case scenario.
Sorting

• **Input:** sequence of n numbers

 $\langle a_1, a_2, \ldots, a_n \rangle$

• **Output:** a permutation of the input sequence $\langle b_1, b_2, \ldots, b_n \rangle$ such that:

 $b_1 \leq b_2 \leq \ldots \leq b_n$
Insertion Sort

- Adding a new element to a sorted list will keep the list sorted if the element is inserted in the correct place.

- A single element list is sorted.

- Inserting a second element in the proper place keeps the list sorted.

- This is repeated until all the elements have been inserted into the sorted part of the list.
Insertion Sort

INSERTION-SORT \((A)\)

1. for \(j = 2\) to \(\text{length}[A]\)
2. \(\text{key} = A[j]\)
3. // Insert \(A[j]\) into the sorted sequence \(A[1...j-1]\)
4. \(i = j - 1\)
5. while \(i > 0\) and \(A[i] > \text{key}\)
 7. \(i = 1 - 1\)
8. \(A[i+1] = \text{key}\)

Source: “Introduction to Algorithms” 3rd Edition
Insertion Sort

Sorted already

Not yet processed
Algorithm Analysis

- In general, the time taken by an algorithm grows with the size of the input.
- So, it is traditional to describe the running time of a program as a function of the size of its input.
- The **running time** of an algorithm on a particular input is the number of primitive operations executed.
- We care about the worst-case scenario.
Important note before we start

When a **for** or **while** loop exits in the usual way (i.e., due to the test in the loop header), the test is executed one time more than the loop body.
Analyzing Insertion Sort

INSERTION-SORT (A)

1. **for** $j = 2$ to length[A]

   ```
   for j = 2 to length[A]  
   ```

2. key = A[j]

   ```
   key = A[j]  
   ```


   ```
   // Insert A[j] into the sorted sequence A[1…j-1]  
   ```

4. $i = j - 1$

   ```
   i = j - 1  
   ```

5. **while** $i > 0$ and A[i] > key

   ```
   while i > 0 and A[i] > key  
   ```


   ```
   A[i+1] = A[i]  
   ```

7. $i = i - 1$

   ```
   i = i - 1  
   ```

8. $A[i+1] = key$

   ```
   A[i+1] = key  
   ```

t_j is the number of times the while loop test in step 5 is executed for that value of j.

Source: “Introduction to Algorithms” 3rd Edition
Analyzing Insertion Sort

\[T(n) = c_1n + c_2(n - 1) + c_4(n - 1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8(n - 1). \]

Best case:
- A is sorted
- \(t_j = 1 \) in step 5 for all \(j \)

\[T(n) = c_1n + c_2(n - 1) + c_4(n - 1) + c_5 n + c_8(n - 1) \]
\[= (c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8). \]
\[T(n) = an + b \]

Worst case:
- A is reverse sorted
- \(t_j = j \)

\[T(n) = c_1n + c_2(n - 1) + c_4(n - 1) + c_5 \left(\frac{n(n + 1)}{2} - 1 \right) + c_6 \left(\frac{n(n - 1)}{2} \right) + c_7 \left(\frac{n(n - 1)}{2} \right) + c_8(n - 1) \]
\[= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2} \right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8 \right) n \]
\[- (c_2 + c_4 + c_5 + c_8). \]

\[T(n) = an^2 + bn + n \]

Source: “Introduction to Algorithms” 3rd Edition
How to Design An Algorithm

• Incremental approach: similar to insertion sort

• Divide-and-conquer approach:
 – **Divide**: break the problem into similar subproblems similar to the original problem but smaller in size
 – **Conquer**: solve the subproblems recursively
 – **Combine**: combine the solutions to create the solution of the original problem
Merge Sort

Sorts the elements of subarray A[p..r].
Initially: p = 1 and r = length[A]

```
MERGE-SORT(A, p, r)
1   if p < r
2     q = \lfloor (p + r)/2 \rfloor
3   MERGE-SORT(A, p, q)
4   MERGE-SORT(A, q + 1, r)
5   MERGE(A, p, q, r)
```

Source: “Introduction to Algorithms” 3rd Edition
Merge Sort

\textsc{Merge}(A, p, q, r)

1. \(n_1 = q - p + 1 \)
2. \(n_2 = r - q \)
3. let \(L[1..n_1 + 1] \) and \(R[1..n_2 + 1] \) be new arrays
4. \textbf{for} \(i = 1 \) to \(n_1 \)
5. \hspace{1em} \(L[i] = A[p + i - 1] \)
6. \textbf{for} \(j = 1 \) to \(n_2 \)
7. \hspace{1em} \(R[j] = A[q + j] \)
8. \(L[n_1 + 1] = \infty \)
9. \(R[n_2 + 1] = \infty \)
10. \(i = 1 \)
11. \(j = 1 \)
12. \textbf{for} \(k = p \) to \(r \)
13. \hspace{1em} \textbf{if} \(L[i] \leq R[j] \)
14. \hspace{2em} \(A[k] = L[i] \)
15. \hspace{2em} \(i = i + 1 \)
16. \hspace{1em} \textbf{else} \(A[k] = R[j] \)
17. \hspace{2em} \(j = j + 1 \)

Source: "Introduction to Algorithms" 3rd Edition
Execution Example

• Partition

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```

```
7 2 9 4   3 8 6 1
```
Execution Example (cont.)

- Recursive call, partition

```
7 2 9 4 | 3 8 6 1
```

```
7 2 | 9 4
```

```
1 2 3 4 6 7 8 9
```
• Recursive call, partition
Execution Example (cont.)

- Recursive call, base case
Execution Example (cont.)

- Recursive call, base case
Execution Example (cont.)

- **Merge**

```
7 2 9 4 | 3 8 6 1
```

```
7 2 | 9 4
```

```
7 2 | 2 -> 7
```

```
7 -> 7  2 -> 2
```

```
7 2 9 4 | 3 8 6 1
```

```
7 | 9 4
```

```
7 2 | 2 -> 7
```

```
7 -> 7  2 -> 2
```

```
7 2 9 4 | 3 8 6 1
```

```
7 | 9 4
```

```
7 2 | 2 -> 7
```

```
7 -> 7  2 -> 2
```

```
7 2 9 4 | 3 8 6 1
```

```
7 | 9 4
```

```
7 2 | 2 -> 7
```

```
7 -> 7  2 -> 2
```

```
7 2 9 4 | 3 8 6 1
```

```
7 | 9 4
```

```
7 2 | 2 -> 7
```

```
7 -> 7  2 -> 2
```

```
7 2 9 4 | 3 8 6 1
```

```
7 | 9 4
```

```
7 2 | 2 -> 7
```

```
7 -> 7  2 -> 2
```

```
7 2 9 4 | 3 8 6 1
```

```
7 | 9 4
```

```
7 2 | 2 -> 7
```

```
7 -> 7  2 -> 2
```

```
7 2 9 4 | 3 8 6 1
```

```
7 | 9 4
```

```
7 2 | 2 -> 7
```

```
7 -> 7  2 -> 2
```

```
7 2 9 4 | 3 8 6 1
```

```
7 | 9 4
```

```
7 2 | 2 -> 7
```

```
7 -> 7  2 -> 2
```

```
7 2 9 4 | 3 8 6 1
```

```
7 | 9 4
```

```
7 2 | 2 -> 7
```

```
7 -> 7  2 -> 2
```

```
7 2 9 4 | 3 8 6 1
```

```
7 | 9 4
```

```
7 2 | 2 -> 7
```

```
7 -> 7  2 -> 2
```

```
7 2 9 4 | 3 8 6 1
```

```
7 | 9 4
```

```
7 2 | 2 -> 7
```

```
7 -> 7  2 -> 2
```

```
7 2 9 4 | 3 8 6 1
```

```
7 | 9 4
```

```
7 2 | 2 -> 7
```

```
7 -> 7  2 -> 2
```

```
7 2 9 4 | 3 8 6 1
```

```
7 | 9 4
```

```
7 2 | 2 -> 7
```

```
7 -> 7  2 -> 2
```

```
7 2 9 4 | 3 8 6 1
```

```
7 | 9 4
```

```
7 2 | 2 -> 7
```

```
7 -> 7  2 -> 2
```

```
7 2 9 4 | 3 8 6 1
```

```
7 | 9 4
```

```
7 2 | 2 -> 7
```

```
7 -> 7  2 -> 2
```

```
7 2 9 4 | 3 8 6 1
```

```
7 | 9 4
```

```
7 2 | 2 -> 7
```

```
7 -> 7  2 -> 2
```

```
7 2 9 4 | 3 8 6 1
```

```
7 | 9 4
```

```
7 2 | 2 -> 7
```

```
7 -> 7  2 -> 2
```

```
7 2 9 4 | 3 8 6 1
```

```
7 | 9 4
```

```
7 2 | 2 -> 7
```

```
7 -> 7  2 -> 2
```

```
7 2 9 4 | 3 8 6 1
```

```
7 | 9 4
```

```
7 2 | 2 -> 7
```

```
7 -> 7  2 -> 2
```

```
7 2 9 4 | 3 8 6 1
```

```
7 | 9 4
```

```
7 2 | 2 -> 7
```

```
7 -> 7  2 -> 2
```

```
7 2 9 4 | 3 8 6 1
```

```
7 | 9 4
```

```
7 2 | 2 -> 7
```

```
7 -> 7  2 -> 2
```

```
7 2 9 4 | 3 8 6 1
```

```
7 | 9 4
```

```
7 2 | 2 -> 7
```

```
7 -> 7  2 -> 2
```

```
7 2 9 4 | 3 8 6 1
```

```
7 | 9 4
```

```
7 2 | 2 -> 7
```

```
7 -> 7  2 -> 2
```

```
7 2 9 4 | 3 8 6 1
```

```
7 | 9 4
```

```
7 2 | 2 -> 7
```

```
7 -> 7  2 -> 2
```
Execution Example (cont.)

- Recursive call, ..., base case, merge

```
7 2 9 4  | 3 8 6 1
```

```
7 2 9 4
```

```
7 2 2 7
```

```
9 4 4 9
```

```
7 2 2
```

```
2 2
```

```
9 0
```

```
4 4
```

```
7
```

```
2
```

```
9
```

```
4
```

```
1
```
Execution Example (cont.)

- **Merge**

```
7 2 9 4 | 3 8 6 1

7 2 | 9 4 ➔ 2 4 7 9
```

```
7 2 | 2 ➔ 2 7
9 4 ➔ 4 9
```

```
7 ➔ 7
2 ➔ 2
9 ➔ 9
4 ➔ 4
```
Execution Example (cont.)

- Recursive call, ..., merge, merge

```
7 2 9 4 | 3 8 6 1
```

```
7 2 | 9 4 → 2 4 7 9
```

```
3 8 6 1 | 1 3 6 8
```

```
7 | 2 → 2 7
```

```
9 4 → 4 9
```

```
7 → 7
```

```
2 → 2
```

```
9 → 9
```

```
4 → 4
```

```
3 → 3
```

```
8 → 8
```

```
6 → 6
```

```
1 → 1
```
Execution Example (cont.)

• Merge

\[
\begin{align*}
7 & \rightarrow 7 \\
2 & \rightarrow 2 \\
9 & \rightarrow 9 \\
4 & \rightarrow 4 \\
3 & \rightarrow 3 \\
8 & \rightarrow 8 \\
6 & \rightarrow 6 \\
1 & \rightarrow 1
\end{align*}
\]
Analyzing Merge Sort

\[T(n) = \text{divide work} + \text{conquer work} + \text{combine work} \]

- Calculate the middle of the array
- Recursively solve 2 subproblems each of size \(n/2 \)
- Combine the elements
Analyzing Merge Sort

• \(T(n) = \text{divide work} + \text{conquer work} + \text{combine work} \)
 \[= D(n) + 2T(n/2) + C(n) \]
 \[= c + 2T(n/2) + cn \]
Analyzing Merge Sort

- \(T(n) = \) divide work + conquer work + combine work
 - \(= D(n) + 2T(n/2) + C(n) \)
 - \(= c + 2T(n/2) + cn \)

Source: “Introduction to Algorithms” 3rd Edition

\[T(n) = cn \lg n + cn \]

Total for conquer: \(cn \lg n \)
Bubble Sort

• If we **compare pairs of adjacent elements and none are out of order**, the list is sorted

• If any are out of order, we must swap them to get an ordered list

• **Bubble sort will make passes through the list** swapping any adjacent elements that are out of order
Bubble Sort

• After the first pass, we know that the largest element must be in the correct place

• After the second pass, we know that the second largest element must be in the correct place

• Because of this, we can shorten each successive pass of the comparison loop
Bubble Sort Example
Bubble Sort Algorithm

numberOfPairs = N
swappedElements = true

while (swappedElements) do
 numberOfPairs = numberOfPairs - 1
 swappedElements = false

 for i = 1 to numberOfPairs do
 if (A[i] > A[i + 1]) then
 Swap(A[i], A[i + 1])
 swappedElements = true
 end if
 end for
end while
Best-Case Analysis

• If the elements start in sorted order, the for loop will compare the adjacent pairs but not make any changes

• So the swappedElements variable will still be false and the while loop is only done once

• There are $N - 1$ comparisons in the best case
Worst-Case Analysis

• In the worst case the while loop must be done as many times as possible. This happens when the data set is in the reverse order.

• Each pass of the for loop must make at least one swap of the elements

• The number of comparisons will be:

\[W(N) = \sum_{i=1}^{N-1} (N - i) = \sum_{k=N-1}^{1} k = \sum_{i=1}^{N-1} i = \frac{(N - 1) \times N}{2} = O(N^2) \]
Quicksort Algorithm

• Another divide-and-conquer algorithm
• Quicksort is usually $O(n \log n)$ but in the worst case slows to $O(n^2)$

Given an array of n elements (e.g., integers):
• If array only contains one element, return
• Else
 – pick one element to use as pivot.
 – Partition elements into two sub-arrays:
 • Elements less than or equal to pivot
 • Elements greater than pivot
 – Quicksort two sub-arrays
 – Return results
Quicksort

- Divide step:
 - Pick any element (pivot) \(v \) in \(S \)
 - Partition \(S - \{v\} \) into two disjoint groups
 \[S_1 = \{ x \in S - \{v\} \mid x \leq v \} \]
 \[S_2 = \{ x \in S - \{v\} \mid x \geq v \} \]

- Conquer step: recursively sort \(S_1 \) and \(S_2 \)

- Combine step: the sorted \(S_1 \) (by the time returned from recursion), followed by \(v \), followed by the sorted \(S_2 \) (i.e., nothing extra needs to be done)
Example
quicksort small

0 13 26 31 43 57

quicksort large

75 81 92

0 13 26 31 43 57 65 75 81 92
Pseudo-code

QUICKSORT(*A*, *p*, *r*)
1. if *p* < *r*
2. \[q = \text{PARTITION}(A, p, r) \]
3. \[\text{QUICKSORT}(A, p, q - 1) \]
4. \[\text{QUICKSORT}(A, q + 1, r) \]

PARTITION(*A*, *p*, *r*)
1. \[x = A[r] \]
2. \[i = p - 1 \]
3. for *j* = *p* to *r* - 1
4. \[\text{if } A[j] \leq x \]
5. \[i = i + 1 \]
6. exchange *A*[i] with *A*[j]
7. exchange *A*[i + 1] with *A*[r]
8. return *i* + 1
More Sorting Algorithms

• Shell sort
• Heap sort
• Radix sort
• Counting sort
• Bucket sort
• ...
Now that we have a sorted array, what is the most efficient way to search an element in it?
Binary Search

- **Binary search.** Given value and sorted array \(a[]\), find index \(i\) such that \(a[i] = \text{value}\), or report that no such index exists.

- **Ex.** Binary search for 33.

<table>
<thead>
<tr>
<th>6</th>
<th>13</th>
<th>14</th>
<th>25</th>
<th>33</th>
<th>43</th>
<th>51</th>
<th>53</th>
<th>64</th>
<th>72</th>
<th>84</th>
<th>93</th>
<th>95</th>
<th>96</th>
<th>97</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

\[\text{lo} \quad \text{hi}\]
Binary Search
Efficiency of binary search

- If \(n \) represents the number of names, the maximum number of searches \(x \) necessary to find a name is the smallest integer that satisfies the inequality \(2^x > n \).

\[
\begin{align*}
2^x &> n \\
\log (2^x) &> \log n \\
x \log 2 &> \log n
\end{align*}
\]

The maximum number of searches is the smallest integer greater than \(\log n / \log 2 \)
Efficiency of binary search

<table>
<thead>
<tr>
<th># of elements</th>
<th>Maximum sequential searches necessary</th>
<th>Maximum binary searches necessary</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>7</td>
</tr>
<tr>
<td>1,000</td>
<td>1,000</td>
<td>10</td>
</tr>
<tr>
<td>5,000</td>
<td>5,000</td>
<td>13</td>
</tr>
<tr>
<td>10,000</td>
<td>10,000</td>
<td>14</td>
</tr>
<tr>
<td>50,000</td>
<td>50,000</td>
<td>16</td>
</tr>
<tr>
<td>100,000</td>
<td>100,000</td>
<td>17</td>
</tr>
<tr>
<td>1,000,000</td>
<td>1,000,000</td>
<td>20</td>
</tr>
<tr>
<td>10,000,000</td>
<td>10,000,000</td>
<td>24</td>
</tr>
</tbody>
</table>

With the incredible speed of today’s computers, a binary search becomes necessary only when the number of elements is large.
Don’t you think that binary search is related to trees?
Tree Example:
Linux File Structure
Another Tree Example: Compiler Parse Tree

Parse tree for:
\[x = 1 \\
 y = 2 \\
 3 \times (x + y) \]
So ... What is a tree?

- A tree is a **finite set of one or more nodes** such that:
 - There is a specially designated node called the **root**.
 - The remaining nodes are partitioned into $n \geq 0$ disjoint sets T_1, \ldots, T_n, where each of these sets is a tree.
- We call T_1, \ldots, T_n the **subtrees** of the root.
Some Definitions

• The **degree of a node** is the number of subtrees of the node.

• The node with **degree 0** is a leaf or terminal node.

• A node that has subtrees is the **parent** of the roots of the subtrees.

• The roots of these subtrees are the **children** of the node.

• **Children of the same parent** are **siblings**.

• The **ancestors** of a node are all the nodes along the path from the root to the node.

• The **level or depth** of a node \(n \) is the length of the unique path from the root to \(n \).
A Tree Node

• Every tree node:
 – object - useful information
 – children - pointers to its children nodes
Left Child - Right Sibling

```
    A
   / \
B    C
 /     \\     
E      F      G
 /       \\    /    \
K       L   H    D
       /      \\     \
      M      I    J
```

<table>
<thead>
<tr>
<th>data</th>
<th>left child</th>
<th>right sibling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example: Tree Implementation

typedef struct tnode {
 int key;
 struct tnode* lchild;
 struct tnode* sibling;
} *ptnode;

- Create a tree with three nodes (one root & two children)
- Insert a new node (in tree with root R, as a new child at level L)
- Delete a node (in tree with root R, the first child at level L)
Binary Trees

• A special class of trees: max degree for each node is 2

• Recursive definition: A binary tree is a finite set of nodes that is either empty or consists of a root and two disjoint binary trees called the left subtree and the right subtree.
Example: Is this a binary tree?
Example of Binary Trees

- Complete Binary Tree
- Skewed Binary Tree
Maximum Number of Nodes in BT

- The maximum number of nodes on level i of a binary tree is 2^{i-1}, $i \geq 1$ (assuming root is at level 1).
- The maximum number of nodes in a binary tree of depth k is $2^k - 1$, $k \geq 1$.
Full BT vs. Complete BT

- A full binary tree of depth k is a binary tree of depth k having $2^k - 1$ nodes, $k \geq 0$ (root is at depth 1)
- A binary tree with n nodes and depth k is complete iff its nodes correspond to the nodes numbered from 1 to n in the full binary tree of depth k.

![Complete binary tree](image1)

![Full binary tree of depth 4](image2)
Binary Tree Representations: Array

• If a complete binary tree with \(n \) nodes (depth = \(\log n + 1 \)) is represented sequentially, then for any node with index \(i \), \(1 \leq i \leq n \), we have:
 • parent\((i)\) is at \(i/2 \) if \(i \neq 1 \). If \(i = 1 \), \(i \) is at the root and has no parent.
 • leftChild\((i)\) is at \(2i \) if \(2i \leq n \). If \(2i > n \), then \(i \) has no left child.
 • rightChild\((i)\) is at \(2i + 1 \) if \(2i + 1 \leq n \). If \(2i + 1 > n \), then \(i \) has no right child.
Array presentation
(aka Sequential presentation)

(1) waste space
(2) insertion/deletion problem
Tree Presentation: Linked Representation

typedef struct tnode *ptnode;
typedef struct tnode {
 int data;
 ptnode left, right;
};
Binary Tree Traversals

- There are six possible combinations of traversal
 - lRr, lrR, Rlr, Rrl, rRl, rlR
- Adopt convention that we traverse left before right, only 3 traversals remain
 - lRr, lrR, Rlr
 - inorder, postorder, preorder
Example: Arithmetic Expression Using BT

Arithmetic Expression Using BT

+ * /
A B C D E

inorder traversal
A / B * C * D + E

infix expression

preorder traversal
+ * * / A B C D E

prefix expression

postorder traversal
A B / C * D * E +
void inorder(ptnode ptr)
 /* inorder tree traversal */
{
 if (ptr) {
 inorder(ptr->left);
 printf("%d", ptr->data);
 inorder(ptr->right);
 }
}
void preorder(ptnode ptr)
 { /* preorder tree traversal */
 if (ptr) {
 printf("%d", ptr->data);
 preorder(ptr->left);
 preorder(ptr->right);
 }
 }

+ * * / A B C D E
void postorder(ptnode ptr)
/* postorder tree traversal */
{
 if (ptr) {
 postorder(ptr->left);
 postdorder(ptr->right);
 printf("%d", ptr->data);
 }
}

A B / C * D * E +
Euler Tour Traversal

- generic traversal of a binary tree
- the preorder, inorder, and postorder traversals are special cases of the Euler tour traversal
- “walk around” the tree
Conclusions

• In this lecture, we have seen examples of basic algorithms used in many applications and compared their complexities.

• Heuristics are the way to go if we cannot get the exact/best results with reasonable resources.

• You already know stack and queues ... Now you know trees!