CSCI-GA.1144-001
PAC II
Lecture 7: Algorithms I

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com
Scenario 1: Amazon buying Adventure

- Early April 2011: A scientist at UC-Berkeley logged on to Amazon.com to buy an extra book for his lab.
- He usually pays $35-$40 per copy
- But on that day, he found 2 used copies, one priced at $1,730,045 the other at $2,198,177!!
- He thought it was just a mistake or a joke
- He re-checked the following day and the prices were $2,194,443 and $2,788,233!!
- The escalation continued for two weeks with the price peaking on April 18th at $28,698,655 (+ $3.99 shipping)!!
Scenario 2: Flash Crash

- Early on May 6, 2010: stock market was hit by unsettling developments in Greece.... BUT
- At 2:42pm (EST) markets start dropping into a free fall
- At 2:47pm (i.e. 300 seconds later): Dow Jones was down 998.5 points (the largest single day drop in history!)
- Nearly $1 Trillion of wealth fell into the electronic ether!!
- Some share prices crashed to one penny ($0.01) rendering billion-dollar companies worthless!
- Dow Jones recovered 500 points in less than 3 minutes!!
What Happened??

• Scenario 1:
 – **Algorithms** used by Amazon to price books got into price war!
 – One of the seller’s algorithms was programmed to price the book slightly higher than the competitor’s price.
 – The second algorithm, in turn, increased its price!
 – Things didn’t turn to normal until a human being stepped in and overrode the system.

• Scenario 2:
 – We don’t know till today!!
 – Explanation 1: Some of the blame was directed to a city money manager whose algorithm sold $4B worth of stock too quickly.
 – Explanation 2: Group of traders who conspired to send things down all at once through a coordinated algorithms
As we put more and more of our world under the control of algorithms, we can lose track of who – or what – is pulling the strings.

from Christopher Steiner ‘s book “Automate This: How Algorithms Came to Rule our World” (from which I got the previous two scenarios too!).
Algorithms??

Well-defined computational procedure that takes some value, or set of values, as input and produces some value, or set of values, as output.

A tool for solving a well-specified computational problem.

The statement of the problem specifies in general terms the desired input/output relationship.
Problem Statement

- Problem specifications have two parts:
 1. the set of allowed input instances,
 2. the required properties of the algorithm’s output
Questions

• What is the difference between a program and an algorithm?
• Is error handling part of the algorithm? or the HLL program?
• Does your algorithm need to produce just a correct result? or always the best result?
• If computers were infinitely fast and memory was free, would you have any reasons to study algorithms?
Can We Solve Anything With a Computer?

- **Undecidable**
 - Cannot be solved by an algorithm
 - e.g. Halting problem (given a program and inputs for it, decide whether it will run forever or will eventually halt.)

- **Unsolvable**
 - No finite algorithm
 - e.g. Goldbach’s conjecture (Every even number greater than 2 can be written as the sum of two primes.)

- **Intractable**
 - Unreasonable amount of time and resources
Steps of an algorithm

• Finite number
• Unambiguous
• Very specific
• Can be carried out in a finite amount of time in a deterministic way
• Since we can only input, store, process & output data on a computer, the instructions in our algorithms will be limited to these functions
Algorithm Properties

• It must be correct.
• It must be composed of a series of concrete steps.
• There can be no ambiguity as to which step will be performed next.
• It must be composed of a finite number of steps.
• It must terminate.
Algorithm Is Different Than A HLL Program

• In algorithms you do not need to use strict syntax
• You can present an algorithm in pseudo-code, flowchart, ...
• Pseudocode is not concerned with issues of software engineering (e.g. error handling, abstraction, modularity, ...).
Pseudocode Algorithm

• **Example**: Write an algorithm to determine a student’s final grade and indicate whether it is passing or failing. The final grade is calculated as the average of four marks.
Pseudocode Algorithm

Pseudocode:

• *Input a set of 4 marks*
• *Calculate their average by summing and dividing by 4*
• *if average is below 50*

 Print “FAIL”

else

 Print “PASS”
Pseudocode Algorithm

• Detailed Algorithm

Step 1: Input M1,M2,M3,M4
Step 2: GRADE ← (M1+M2+M3+M4)/4
Step 3: if (GRADE < 50) then
 Print “FAIL”
else
 Print “PASS”
endif
A Flowchart

- shows logic of an algorithm
- emphasizes individual steps and their interconnections
- e.g. control flow from one action to the next
Flowchart Symbols

Basic

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Use in Flowchart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oval</td>
<td></td>
<td>Denotes the beginning or end of the program</td>
</tr>
<tr>
<td>Parallelogram</td>
<td></td>
<td>Denotes an input operation</td>
</tr>
<tr>
<td>Rectangle</td>
<td></td>
<td>Denotes a process to be carried out e.g. addition, subtraction, division etc.</td>
</tr>
<tr>
<td>Diamond</td>
<td></td>
<td>Denotes a decision (or branch) to be made. The program should continue along one of two routes. (e.g. IF/THEN/ELSE)</td>
</tr>
<tr>
<td>Hybrid</td>
<td></td>
<td>Denotes an output operation</td>
</tr>
<tr>
<td>Flow line</td>
<td></td>
<td>Denotes the direction of logic flow in the program</td>
</tr>
</tbody>
</table>
Example

- **Step 1:** Input M1, M2, M3, M4
- **Step 2:** GRADE $\leftarrow \frac{(M1+M2+M3+M4)}{4}$
- **Step 3:** if (GRADE < 50) then
 - Print “FAIL”
 else
 - Print “PASS”
endif
Example

Problem: Robot Tour Optimization

Input: A set S of n points in the plane.

Output: What is the shortest cycle tour that visits each point in the set S?
Example

NearestNeighbor(P)
 Pick and visit an initial point p_0 from P
 $p = p_0$
 $i = 0$
 While there are still unvisited points
 $i = i + 1$
 Select p_i to be the closest unvisited point to p_{i-1}
 Visit p_i
 Return to p_0 from p_{n-1}

The above algorithm is:
• Simple to understand and implement
• Makes sense

And ... WRONG! Does not produce the shortest path!
Example

NearestNeighbor\((P) \)

Pick and visit an initial point \(p_0 \) from \(P \)
\[
\begin{align*}
p &= p_0 \\
i &= 0
\end{align*}
\]
While there are still unvisited points
\[
\begin{align*}
i &= i + 1 \\
Select \ p_i \ &\text{to be the closest unvisited point to} \ p_{i-1} \\
Visit \ p_i \\
Return \ to \ p_0 \ &\text{from} \ p_{n-1}
\end{align*}
\]

This is what the above alg. produces

This is the optimal solution.
Example

ClosestPair(P)

Let n be the number of points in set P.

For $i = 1$ to $n - 1$ do

\[d = \infty \]

For each pair of endpoints (s, t) from distinct vertex chains

if $\text{dist}(s, t) \leq d$ then $s_m = s$, $t_m = t$, and $d = \text{dist}(s, t)$

Connect (s_m, t_m) by an edge

Connect the two endpoints by an edge

This one will produce the optimal solution of the previous example.

But:
Hmmm ...

• Looks like for this problem any algorithm can produce a very bad result for some inputs 😞

• This example we just saw is a classical problem called **The Traveling Salesman Problem** (TSP)
Traveling Salesman Problem

• The traveling salesman must travel to n different towns in his area each month in order to deliver something important. Each town is a different distance away from his town and from each other town. How do you figure out a route that will minimize the distance traveled?
Brute Force?

• Enumerate all possible routes
 – For 10 towns for example there are 10! (3,628,800)
• Choose the shortest.
• This is called brute force algorithm.

\[
\text{OptimalTSP}(P) \\
\quad d = \infty \\
\quad \text{For each of the } n! \text{ permutations } P_i \text{ of point set } P \\
\quad \text{If } (\text{cost}(P_i) \leq d) \text{ then } d = \text{cost}(P_i) \text{ and } P_{\text{min}} = P_i \\
\quad \text{Return } P_{\text{min}}
\]
Is Brute Force a Good Solution?

Take Home Lesson: There is a fundamental difference between algorithms, which always produce a correct result, and heuristics, which may usually do a good job but without providing any guarantee.

If we can compute a billion possible solutions per second, to solve a 30-stop TSP would require more than 8×10^{15} years, or 8 quadrillion years!
How Do We Judge Algorithms?

• Correctness
• Efficiency
 – Speed
 – Memory
• **Algorithm analysis** is predicting the resources that the algorithm requires
• **Algorithms can be understood and studied in a language and machine-independent manner.**
Machine Model \rightarrow RAM

- Random Access Machine
- Instructions are executed one after the other.
- Basic instructions (arithmetic, logic, data movement) take fixed amount of time
- Memory is infinite
- We need a way that summarizes the behavior of an algorithm executed on RAM
Worst- / average- / best-case

- **Worst-case running time of an algorithm**
 - The longest running time for any input of size \(n \)
 - An upper bound on the running time for any input
 \(\Rightarrow\) guarantee that the algorithm will never take longer
 - Example: Sort a set of numbers in increasing order; and the data is in decreasing order
 - The worst case can occur fairly often
 - E.g. in searching a database for a particular piece of information

- **Best-case running time**
 - sort a set of numbers in increasing order; and the data is already in increasing order

- **Average-case running time**
 - May be difficult to define what “average” means
The Big Oh Notation

- A way of giving an approximation of the amount of computation done by an algorithm given the input size
- ignores the difference between multiplicative constants: \(f(n) = 2n \) and \(g(n) = n \) are identical in Big Oh analysis
The Big Oh Notation

- $f(n) = O(g(n))$ means $c \cdot g(n)$ is an upper bound on $f(n)$. Thus there exists some constant c such that $f(n)$ is always $\leq c \cdot g(n)$, for large enough n (i.e., $n \geq n_0$ for some constant n_0).

- $f(n) = \Omega(g(n))$ means $c \cdot g(n)$ is a lower bound on $f(n)$. Thus there exists some constant c such that $f(n)$ is always $\geq c \cdot g(n)$, for all $n \geq n_0$.

- $f(n) = \Theta(g(n))$ means $c_1 \cdot g(n)$ is an upper bound on $f(n)$ and $c_2 \cdot g(n)$ is a lower bound on $f(n)$, for all $n \geq n_0$. Thus there exist constants c_1 and c_2 such that $f(n) \leq c_1 \cdot g(n)$ and $f(n) \geq c_2 \cdot g(n)$.
The Big Oh Notation

Problem: Is $2^{n+1} = \Theta(2^n)$?
Example

• \(f(n) = 2n + 5 \)
 \(g(n) = n \)

• Consider the condition
 \(2n + 5 \leq n \)
will this condition ever hold? No!

• How about if we multiply a constant by \(n \)?
 \(2n + 5 \leq 3n \)
the condition holds for values of \(n \) greater than or equal to 5

• This means we can select \(c = 3 \) and \(n_0 = 5 \) and
 \(f(n) \rightarrow O(n) \)
Example (cont’d)

2n+5 is $O(n)$
Is It Wise to Ignore Constants?

• If two algorithms one is $O(n^2)$ and the other $O(\log n)$
 – one is $C_1 n^2$ and the other $C_2 \log n$
 – What if C_2 is much bigger than C_1?

<table>
<thead>
<tr>
<th>n</th>
<th>$f(n)$</th>
<th>$\lg n$</th>
<th>n</th>
<th>$n \lg n$</th>
<th>n^2</th>
<th>2^n</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td>0.003 µs</td>
<td>0.01 µs</td>
<td>0.033 µs</td>
<td>0.1 µs</td>
<td>1 µs</td>
<td>3.63 ms</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>0.004 µs</td>
<td>0.02 µs</td>
<td>0.086 µs</td>
<td>0.4 µs</td>
<td>1 ms</td>
<td>77.1 years</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>0.005 µs</td>
<td>0.03 µs</td>
<td>0.147 µs</td>
<td>0.9 µs</td>
<td>1 sec</td>
<td>8.4 $\times 10^{15}$ yrs</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>0.005 µs</td>
<td>0.04 µs</td>
<td>0.213 µs</td>
<td>1.6 µs</td>
<td>18.3 min</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>0.006 µs</td>
<td>0.05 µs</td>
<td>0.282 µs</td>
<td>2.5 µs</td>
<td>13 days</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>0.007 µs</td>
<td>0.1 µs</td>
<td>0.644 µs</td>
<td>10 µs</td>
<td>4 $\times 10^{13}$ yrs</td>
<td></td>
</tr>
<tr>
<td>1,000</td>
<td></td>
<td>0.010 µs</td>
<td>1.00 µs</td>
<td>9.966 µs</td>
<td>100 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td></td>
<td>0.013 µs</td>
<td>10 µs</td>
<td>130 µs</td>
<td>10 sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100,000</td>
<td></td>
<td>0.017 µs</td>
<td>0.10 ms</td>
<td>1.67 ms</td>
<td>16.7 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,000,000</td>
<td></td>
<td>0.020 µs</td>
<td>1 ms</td>
<td>19.93 ms</td>
<td>1.16 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000,000</td>
<td></td>
<td>0.023 µs</td>
<td>0.01 sec</td>
<td>0.23 sec</td>
<td>115.7 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100,000,000</td>
<td></td>
<td>0.027 µs</td>
<td>0.10 sec</td>
<td>2.66 sec</td>
<td>31.7 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,000,000,000</td>
<td></td>
<td>0.030 µs</td>
<td>1 sec</td>
<td>29.90 sec</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Big Oh examples

- \(N^2 / 2 - 3N = O(N^2) \)
- \(1 + 4N = O(N) \)
- \(7N^2 + 10N + 3 = O(N^2) = O(N^3) \)
- \(\log_{10} N = \log_2 N / \log_2 10 = O(\log_2 N) = O(\log N) \)
- \(\sin N = O(1); \ 10 = O(1), \ 10^{10} = O(1) \)
- \(\log N + N = O(N) \)
- \(N = O(2^N), \) but \(2^N \) is not \(O(N) \)
Example

- Calculate \(\sum_{i=1}^{N} i^3 \)
- \(\text{int sum(int n)} \)
- \{
 \text{int partialSum;}

 \text{1 partialSum=0;}
 \text{2 for (int i=1;i<=n;i++)}
 \text{3 \hspace{1cm} partialSum += i*i*i;}
 \text{4 \hspace{1cm} return partialSum;}
\}

- Lines 1 and 4 count for one unit each
- Line 3: executed \(N \) times, each time four units
- Line 2: (1 for initialization, \(N+1 \) for all the tests, \(N \) for all the increments) total \(2N + 2 \)
- total cost: \(6N + 4 \Rightarrow O(N) \)
Good Book
Good Book
Good Book: For Fun!
Conclusions

• In this lecture we defined what an algorithm is in simple terms.
• Big Oh notation is a convenient way to compare algorithms
• Sometimes the best solution may not be needed and a good-enough solution is just fine.